scholarly journals Supplementary material to "Alaskan Stream flow in the eastern subarctic Pacific and the eastern Bering Sea and its impact on biological productivity"

Author(s):  
Sergey Prants ◽  
Andrey Andreev ◽  
Michael Uleysky ◽  
Maxim Budyansky
2018 ◽  
Author(s):  
Sergey Prants ◽  
Andrey Andreev ◽  
Michael Uleysky ◽  
Maxim Budyansky

Abstract. We demonstrate the transport pathways of Alaskan Stream water in the eastern subarctic Pacific and the eastern Bering Sea from October 1, 1994 to September 12, 2016 with the help of altimetry-based Lagrangian maps. A mesoscale eddy activity along the shelf-deep basin boundaries in the Alaskan Stream region and the eastern Bering Sea is shown to be related with the wind stress curl in the northern North Pacific in winter. A significant correlation is found between the concentration of chlorophyll-a in the Alaskan Stream area and eastern Bering Sea in August–September and the wind stress curl in the northern North Pacific in November–March. The mesoscale dynamics, forced by the wind stress curl in winter, may determine not only lower-trophic-level organism biomass but also salmon abundance/catch in the study area.


Harmful Algae ◽  
2017 ◽  
Vol 63 ◽  
pp. 13-22 ◽  
Author(s):  
Masafumi Natsuike ◽  
Hiroshi Oikawa ◽  
Kohei Matsuno ◽  
Atsushi Yamaguchi ◽  
Ichiro Imai

Author(s):  
Christopher N Rooper ◽  
Ivonne Ortiz ◽  
Albert J Hermann ◽  
Ned Laman ◽  
Wei Cheng ◽  
...  

Abstract Climate-related distribution shifts for marine species are, in general, amplified in northern latitudes. The objective of this study was to predict future distributions of commercially important species in the eastern Bering Sea under six climate scenarios, by incorporating predictions of future oceanographic conditions. We used species distribution modelling to determine potential distribution changes in four time periods (2013–2017, 2030–2039, 2060–2069, and 2090-2099) relative to 1982–2012 for 16 marine fish and invertebrates. Most species were predicted to have significant shifts in the centre of gravity of the predicted abundance, the area occupied, and the proportion of the predicted abundance found in the standard bottom trawl survey area. On average the shifts were modest, averaging 35.2 km (ranging from 1 to 202 km). There were significant differences in the predicted trend for distribution metrics among climate scenarios, with the most extensive changes in distribution resulting from Representative Concentration Pathway 8.5 climate scenarios. The variability in distributional shifts among years and climate scenarios was high, although the magnitudes were low. This study provides a basis for understanding where fish populations might expand or contract in future years. This will provide managers’ information that can help guide appropriate actions under warming conditions.


1957 ◽  
Vol 21 (2) ◽  
pp. 237 ◽  
Author(s):  
Ford Wilke ◽  
Karl W. Kenyon

Sign in / Sign up

Export Citation Format

Share Document