scholarly journals Supplementary material to "Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus"

Author(s):  
Ulrike Braeckman ◽  
Felix Janssen ◽  
Gaute Lavik ◽  
Marcus Elvert ◽  
Hannah Marchant ◽  
...  
2018 ◽  
Author(s):  
Ulrike Braeckman ◽  
Felix Janssen ◽  
Gaute Lavik ◽  
Marcus Elvert ◽  
Hannah Marchant ◽  
...  

Abstract. In the Arctic Ocean, increased sea surface temperature and sea ice retreat have triggered shifts in phytoplankton communities. In Fram Strait, coccolithophorids have been occasionally observed to replace diatoms as the dominating taxon of spring blooms. Deep-sea benthic communities depend strongly on such blooms but with a change in quality and quantity of primarily produced organic matter [OM] input, this may likely have implications for deep-sea life. We compared the in situ responses of Arctic deep-sea benthos to input of phytodetritus from a diatom (Thalassiosira sp.) and a coccolithophorid (Emiliania huxleyi) species. We traced the fate of 13C and 15N labelled phytodetritus into respiration, assimilation by bacteria and infauna in a 4 d and 14 d experiment. Bacteria were key assimilators in the Thalassiosira OM degradation whereas Foraminifera and other infauna were at least as important as bacteria in the Emiliania OM assimilation. After 14 d, 5 times less carbon and 3.8 times less nitrogen of the Emiliania detritus was recycled compared to Thalassiosira detritus. This implies that the utilization of Emiliania OM may be less efficient than for Thalassiosira OM. Our results indicate that a shift from diatom-dominated input to a coccolithophorid-dominated pulse could entail a delay in OM cycling, which may affect bentho-pelagic coupling.


2018 ◽  
Vol 15 (21) ◽  
pp. 6537-6557 ◽  
Author(s):  
Ulrike Braeckman ◽  
Felix Janssen ◽  
Gaute Lavik ◽  
Marcus Elvert ◽  
Hannah Marchant ◽  
...  

Abstract. In the Arctic Ocean, increased sea surface temperature and sea ice retreat have triggered shifts in phytoplankton communities. In Fram Strait, coccolithophorids have been occasionally observed to replace diatoms as the dominating taxon of spring blooms. Deep-sea benthic communities depend strongly on such blooms, but with a change in quality and quantity of primarily produced organic matter (OM) input, this may likely have implications for deep-sea life. We compared the in situ responses of Arctic deep-sea benthos to input of phytodetritus from a diatom (Thalassiosira sp.) and a coccolithophorid (Emiliania huxleyi) species. We traced the fate of 13C- and 15N-labelled phytodetritus into respiration, assimilation by bacteria and infauna in a 4-day and 14-day experiment. Bacteria were key assimilators in the Thalassiosira OM degradation, whereas Foraminifera and other infauna were at least as important as bacteria in the Emiliania OM assimilation. After 14 days, 5 times less carbon and 3.8 times less nitrogen of the Emiliania detritus was recycled compared to Thalassiosira detritus. This implies that the utilization of Emiliania OM may be less efficient than for Thalassiosira OM. Our results indicate that a shift from diatom-dominated input to a coccolithophorid-dominated pulse could entail a delay in OM cycling, which may affect benthopelagic coupling.


2018 ◽  
Author(s):  
Bhavya P. Sadanandan ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kaang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 μm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labelling experiments for the first time as part of the NABOS (Nansen and Amundsen Basins Observational System) program during August 21 to September 22, 2013. The depth integrated C, NO3−, and NH4+ uptake rates by small phytoplankton showed a wide range from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3−, and NH4+ was varied from 24 to 89 %, 32 to 89 %, and 28 to 89 %, respectively. The turnover times for NO3− and NH4+ by small phytoplankton during the present study point towards the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3−. Relatively, higher C and N uptake rates by small phytoplankton obtained during the present study at locations with less sea ice concentrations points towards the possibility of small phytoplankton thrive under sea ice retreat under warming conditions. The high contributions of small phytoplankton towards the total carbon and nitrogen uptake rates suggest capability of small size autotrophs to withstand in the adverse hydrographic conditions introduced by climate change.


Science ◽  
1973 ◽  
Vol 179 (4070) ◽  
pp. 282-283 ◽  
Author(s):  
K. L. Smith ◽  
J. M. Teal

2018 ◽  
Vol 15 (18) ◽  
pp. 5503-5517 ◽  
Author(s):  
P. Sadanandan Bhavya ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 µm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labeling experiments; this research, which was novel and part of the NABOS (Nansen and Amundsen Basins Observational System) program, took place from 21 August to 22 September 2013. The depth-integrated carbon (C), nitrate (NO3-), and ammonium (NH4+) uptake rates by small phytoplankton ranged from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 mg C m−2 h−1, and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3-, and NH4+ varied from 25 % to 89 %, 31 % to 89 %, and 28 % to 91 %, respectively. The turnover times for NO3- and NH4+ by small phytoplankton found in the present study indicate the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3-. Additionally, the relatively higher C and N uptake rates by small phytoplankton obtained in the present study from locations with less sea ice concentration indicate the possibility that small phytoplankton thrive under the retreat of sea ice as a result of warming conditions. The high contributions of small phytoplankton to the total C and N uptake rates suggest the capability of small autotrophs to withstand the adverse hydrographic conditions introduced by climate change.


2014 ◽  
Vol 11 (9) ◽  
pp. 13985-14021 ◽  
Author(s):  
C. Dong ◽  
X. Bai ◽  
H. Sheng ◽  
L. Jiao ◽  
H. Zhou ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants, which can be transferred to a long distance and tend to accumulation in marine sediment. However, PAHs distribution and natural bioattenuation is less known in open sea, especially in the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to Makarov Basin in the summer of 2010. PAH composition and total concentrations were examined with GC-MS, we found that the concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g−1 dry weight in total and decreased with sediment depths and as well as from the southern to northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. To learn the diversity of bacteria involved in PAHs degradation in situ, the 16S rRNA gene of the total environmental DNA was analyzed with Illumina high throughput sequencing (IHTS). In all the sediments, occurred the potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant. Meanwhile on board, enrichment with PAHs was initiated and repeated transfer in laboratory to obtain the degrading consortia. Most above mentioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas, occurred alternately as a predominant member in enrichment cultures from different sediments, as revealed with IHTS and PCR-DGGE. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus and Pseudomonas showed the best degradation capability under low temperature. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may play the most important role in PAHs mineralization in situ.


Sign in / Sign up

Export Citation Format

Share Document