scholarly journals Supplementary material to "Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea"

Author(s):  
Ines Bartl ◽  
Dana Hellemann ◽  
Christophe Rabouille ◽  
Kirstin Schulz ◽  
Petra Tallberg ◽  
...  
2019 ◽  
Vol 16 (18) ◽  
pp. 3543-3564 ◽  
Author(s):  
Ines Bartl ◽  
Dana Hellemann ◽  
Christophe Rabouille ◽  
Kirstin Schulz ◽  
Petra Tallberg ◽  
...  

Abstract. Estuaries worldwide act as “filters” of land-derived nitrogen (N) loads, yet differences in coastal environmental settings can affect the N filter function. We investigated microbial N retention (nitrification, ammonium assimilation) and N removal (denitrification, anammox) processes in the aphotic benthic system (bottom boundary layer (BBL) and sediment) of two Baltic Sea estuaries differing in riverine N loads, trophic state, geomorphology, and sediment type. In the BBL, rates of nitrification (5–227 nmol N L−1 d−1) and ammonium assimilation (9–704 nmol N L−1 d−1) were not enhanced in the eutrophied Vistula Estuary compared to the oligotrophic Öre Estuary. No anammox was detected in the sediment of either estuary, while denitrification rates were twice as high in the eutrophied (352±123 µmol N m−2 d−1) as in the oligotrophic estuary. Particulate organic matter (POM) was mainly of phytoplankton origin in the benthic systems of both estuaries. It seemed to control heterotrophic denitrification and ammonium assimilation as well as autotrophic nitrification by functioning as a substrate source of N and organic carbon. Our data suggest that in stratified estuaries, POM is an essential link between riverine N loads and benthic N turnover and may furthermore function as a temporary N reservoir. During long particle residence times or alongshore transport pathways, increased time is available for the recycling of N until its eventual removal, allowing effective coastal filtering even at low process rates. Understanding the key controls and microbial N processes in the coastal N filter therefore requires to also consider the effects of geomorphological and hydrological features.


2018 ◽  
Author(s):  
Ines Bartl ◽  
Dana Hellemann ◽  
Christophe Rabouille ◽  
Kirstin Schulz ◽  
Petra Tallberg ◽  
...  

Abstract. Estuaries worldwide are known to act as filters of land-derived N loads, yet their variable environmental settings can affect microbial nitrogen (N) retention and removal and thus the coastal filter function. We investigated microbial N-retention (nitrification, ammonium assimilation) and N-removal (denitrification, anammox) in the aphotic benthic systems (here defined as: bottom boundary layer [BBL] and sediment) of two Baltic Sea estuaries that differ in riverine N loads, trophic state, bottom topography, and sediment type. Contrary to our expectations, nitrification rates (5–227 nmol L−1 d−1) in the BBL neither differed between the eutrophied Vistula estuary and the oligotrophic Öre estuary, nor between seasons. Ammonium assimilation rates were slightly higher in the oligotrophic Öre estuary in spring but did not differ between estuaries in summer (9–704 nmol L−1 d−1). In the sediment, no anammox was found in either estuary and denitrification rates were higher in the eutrophied (349 ± 117 µmol N m−2 d−1) than in the oligotrophic estuary (138 ± 47 µmol N m−2 d−1). Irrespective of their differences, in both estuaries the quality of the mainly phytoplankton-derived particulate organic matter (POM) – evaluated by means of C : N and POC : Chl.a ratios – seemed to control N-cycling processes through the availability of particulate organic N and C as substrate sources. Our data suggest, that in stratified estuaries, phytoplankton-derived POM is an essential link between riverine N loads and benthic N cycling and may function as a temporary N reservoir via long particle residence time or coastal parallel transport. Even at low process rates, effective coastal filtering would thus be achieved by the increased time available for the recycling of N via microbial retention processes until its permanent removal via denitrification.


1998 ◽  
Vol 50 (2-3) ◽  
pp. 169-181 ◽  
Author(s):  
C. Humborg ◽  
G. Nausch ◽  
T. Neumann ◽  
F. Pollehne ◽  
N. Wasmund

2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


2006 ◽  
Vol 51 (5) ◽  
pp. 2300-2307 ◽  
Author(s):  
Pirjo Kuuppo ◽  
Pauliina Uronen ◽  
Anika Petermann ◽  
Timo Tamminen ◽  
Edna Granéli

2014 ◽  
Vol 132 ◽  
pp. 106-115 ◽  
Author(s):  
Karol Kuliński ◽  
Bernd Schneider ◽  
Karoline Hammer ◽  
Ulrike Machulik ◽  
Detlef Schulz-Bull

2017 ◽  
Author(s):  
Violetta Drozdowska ◽  
Iwona Wróbel ◽  
Piotr Markuszewski ◽  
Przemyslaw Makuch ◽  
Anna Raczkowska ◽  
...  

Abstract. The fluorescence and absorption measurements of the samples collected from a surface microlayer (SML) and a subsurface layer (SS), a depth of 1 m were studied during three research cruises in the Baltic Sea along with hydrophysical studies and meteorological observations. Several absorption (E2 : E3, S, SR) and fluorescence (fluorescence intensities at peaks: A, C, M, T, the ratio (M + T) / (A + C), HIX) indices of colored and fluorescent organic matter (CDOM and FDOM) helped to describe the changes in molecular size and weight as well as in composition of organic matter. The investigation allow to assess a decrease in the contribution of two terrestrial components (A and C) with increasing salinity (~ 1.64 % and ~ 1.89 % in SML and ~ 0.78 % and ~ 0.71 % in SS, respectively) and an increase of in-situ produced components (M and T) with salinity (~ 0.52 % and ~ 2.83 % in SML and ~ 0.98 % and ~ 1.87 % in SS, respectively). Hence, a component T reveals the biggest relative changes along the transect from the Vistula River outlet to Gdansk Deep, both in SML and SS, however an increase was higher in SML than in SS (~ 18.5 % and ~ 12.3 %, respectively). The ratio E2 : E3


Sign in / Sign up

Export Citation Format

Share Document