scholarly journals Evaluating the response of d13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystem, to water and nitrogen addition as well as the availability of its d13C as the indicator of water use -efficiency

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Zixun Chen ◽  
Xuejun Liu ◽  
Xiaoqing Cui ◽  
Yaowen Han ◽  
Guoan Wang ◽  
...  

Abstract. Variations in precipitation and atmospheric N deposition affect water and N availability in desert, and thus may have significant effects on desert ecosystems. Haloxylon ammodendron is a dominant plant in Asian desert, and addressing its physiological acclimatization to the changes in precipitation and N deposition can provide an insight into how desert plants adapt extreme environment by physiological adjustment. Carbon isotope ratio (ẟ13C) in plants has been suggested as a sensitive long-term indicator of physiological acclimatization. Therefore, this study evaluated the effect of precipitation change and increasing atmospheric N depositon on ẟ13C of H. ammodendron. Furthermore, Haloxylon ammodendron is a C4 plant, whether its ẟ13C can indicate water use-efficiency (WUE) has not been addressed. In the present study, we designed a field experiment with a completely randomized factorial combination of N and water, and measured ẟ13C, gas exchange and WUE of the assimilating branches of H. ammodendron. ẟ13C in H. ammodendron remained stable under N and water supply, while N addition, water addition and their interaction affected gas exchange and WUE in H. ammodendron. In addition, ẟ13C had no correlation with WUE. This result are associated with the irrelevance between ẟ13C and ci/ca, which might be caused by a special value (0.37) of the degree of bundle-sheath leakiness (φ) or a lower activity of carbonic anhydrase (CA) of H. ammodendron. Thus, ẟ13C of H. ammodendron cannot be used for indicating its WUE.


2016 ◽  
Vol 139 (3-4) ◽  
pp. 565-578 ◽  
Author(s):  
Liting Liu ◽  
Chunsheng Hu ◽  
Jørgen E. Olesen ◽  
Zhaoqiang Ju ◽  
Xiying Zhang

2021 ◽  
Author(s):  
Maren Dubbert ◽  
Angelika Kübert ◽  
Arndt Piayda ◽  
Christiane Werner ◽  
Youri Rothfuss

<p>Two important threats to the sustainable functioning of seminatural grasslands in temperate zones are (1) nutrient loading due to agricultural fertilization and pollution, and (2) the increase of extreme drought events due to climate change. These threats may cause substantial shifts in species diversity and abundance and considerably affect the carbon and water balance of ecosystems. The synergistic effects between those two threats, however, can be complex and are poorly understood. Here, we experimentally investigated the effects of nitrogen addition and extreme drought (separately and in combination) on a seminatural temperate grassland, located in Freiburg (South Germany). To study the grassland response, we combined eddy-covariance techniques with open gas exchange systems. Open gas exchange chambers were connected to an infrared gas analyzer and water isotope spectrometer, which allowed the partitioning of net ecosystem exchange and evapotranspiration. In addition, leaf level physiological responses, e.g. leaf gas-exchange and water potentials, as well as vegetation parameters, e.g. species richness, species abundance, leaf area index, were assessed.</p><p>Our results suggest that grassland communities, strongly weakened in their stress response by nitrogen loading, can substantially lose their carbon sink function during drought. Over the growing season (April-September), the carbon sequestration of the studied grassland was reduced by more than 60% as a consequence of nitrogen addition. Nitrogen addition in combination with precipitation reduction decreased carbon sequestration by 73%. We observed more efficient N utilization in grasses compared to forbs. However, these clearly specific responses of the different functional groups to N loading, both functional groups were able to maintain homeostasis of leaf carbon and water fluxes. Thus, strong declines in the (community) carbon sequestration and water use efficiency were not related to leaf physiological responses in assimilation and transpiration. Instead, nitrogen addition caused a significant loss in forb species (−25%) and precipitation reduction promoted a strong dominance of grass species at season start. Consequently, the resulting grass-dominated and species-poor community suffered from a strong above-ground dieback during the dry summer months, likely caused by lower water use efficiency and weaker drought adaptations of the species community. </p><p>Eutrophication can severely threaten the resilient functioning of grasslands, in particular when drought periods will increase as predicted by future climate scenarios. Our findings emphasize the importance of preserving high diversity of grasslands to strengthen their resistance against extreme events such as droughts.</p>


Sign in / Sign up

Export Citation Format

Share Document