scholarly journals Evaluating the response of ẟ<sup>13</sup>C in <i>Haloxylon ammodendron</i>, a dominant C<sub>4</sub> species in Asian desert ecosystem, to water and nitrogen addition as well as the availability of its ẟ<sup>13</sup>C as the indicator of water use-efficiency

2020 ◽  
Author(s):  
Zixun Chen ◽  
Xuejun Liu ◽  
Xiaoqing Cui ◽  
Yaowen Han ◽  
Guoan Wang ◽  
...  

Abstract. Variations in precipitation and atmospheric N deposition affect water and N availability in desert, and thus may have significant effects on desert ecosystems. Haloxylon ammodendron is a dominant plant in Asian desert, and addressing its physiological acclimatization to the changes in precipitation and N deposition can provide an insight into how desert plants adapt extreme environment by physiological adjustment. Carbon isotope ratio (ẟ13C) in plants has been suggested as a sensitive long-term indicator of physiological acclimatization. Therefore, this study evaluated the effect of precipitation change and increasing atmospheric N depositon on ẟ13C of H. ammodendron. Furthermore, Haloxylon ammodendron is a C4 plant, whether its ẟ13C can indicate water use-efficiency (WUE) has not been addressed. In the present study, we designed a field experiment with a completely randomized factorial combination of N and water, and measured ẟ13C, gas exchange and WUE of the assimilating branches of H. ammodendron. ẟ13C in H. ammodendron remained stable under N and water supply, while N addition, water addition and their interaction affected gas exchange and WUE in H. ammodendron. In addition, ẟ13C had no correlation with WUE. This result are associated with the irrelevance between ẟ13C and ci/ca, which might be caused by a special value (0.37) of the degree of bundle-sheath leakiness (φ) or a lower activity of carbonic anhydrase (CA) of H. ammodendron. Thus, ẟ13C of H. ammodendron cannot be used for indicating its WUE.

2021 ◽  
Vol 18 (9) ◽  
pp. 2859-2870
Author(s):  
Zixun Chen ◽  
Xuejun Liu ◽  
Xiaoqing Cui ◽  
Yaowen Han ◽  
Guoan Wang ◽  
...  

Abstract. Variations in precipitation and atmospheric N deposition affect water and N availability in desert and thus may have significant effects on desert ecosystems. Haloxylon ammodendron is a dominant plant in Asian desert, and addressing its physiological acclimatization to the changes in precipitation and N deposition can provide insight into how desert plants adapt to extreme environments by physiological adjustment. Carbon isotope ratio (δ13C) in plants has been suggested as a sensitive long-term indicator of physiological acclimatization. Therefore, this study evaluated the effect of precipitation change and increasing atmospheric N deposition on δ13C of H. ammodendron. Furthermore, H. ammodendron is a C4 plant; whether its δ13C can indicate water use efficiency (WUE) has not been addressed. In the present study, we designed a field experiment with a completely randomized factorial combination of N and water and measured δ13C and gas exchange of H. ammodendron. Then we calculated the degree of bundle-sheath leakiness (φ) and WUE of the assimilating branches of H. ammodendron. δ13C and φ remained stable under N and water supply, while N addition, water addition and their interaction affected gas exchange and WUE in H. ammodendron. In addition, δ13C had no correlation with WUE. These results were associated with the irrelevance between δ13C and the ratio of intercellular to ambient CO2 concentration (ci / ca), which might be caused by a special value (0.37) of the degree of bundle-sheath leakiness (φ) or a lower activity of carbonic anhydrase (CA) of H. ammodendron. In conclusion, δ13C of H. ammodendron is not sensitive to global change in precipitation and atmospheric N deposition and cannot be used for indicating its WUE.


Oecologia ◽  
1983 ◽  
Vol 59 (2-3) ◽  
pp. 178-184 ◽  
Author(s):  
M. M. Caldwell ◽  
T. J. Dean ◽  
R. S. Nowak ◽  
R. S. Dzurec ◽  
J. H. Richards

2018 ◽  
Vol 16 ◽  
pp. e00475 ◽  
Author(s):  
Songbo Tang ◽  
Yimin Xu ◽  
Yongbiao Lin ◽  
Enqing Hou ◽  
Weijun Shen ◽  
...  

2016 ◽  
Vol 44 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Bianca do Carmo SILVA ◽  
Pêola Reis de SOUZA ◽  
Daihany Moraes CALLEGARI ◽  
Vanessa Ferreira ALVES ◽  
Allan Klynger da Silva LOBATO ◽  
...  

Boron (B) is a very important nutrient required by forest plants; when supplied in adequate amounts, plants can ameliorate the negative effects of abiotic stresses. The objective of this study was to (i) investigate gas exchange, (ii) measure oxidant and antioxidant compounds, and (iii) respond how B supply acts on tolerance mechanism to water deficit in young Schizolobium parahyba plants. The experiment employed a factorial that was entirely randomised, with two boron levels (25 and 250 µmol L-1, simulating conditions of sufficient B and high B, respectively) and two water conditions (control and water deficit). Water deficit induced negative modifications on net photosynthetic rate, stomatal conductance and water use efficiency, while B high promoted intensification of the effects on stomatal conductance and water use efficiency. Hydrogen peroxide and electrolyte leakage of both tissues suffered non-significant increases after B high and when applied water deficit. Ascorbate levels presented increases after water deficit and B high to leaf and root. Our results suggested that the tolerance mechanism to water deficit in young Schizolobium parahyba plants is coupled to increases in total glutathione and ascorbate aiming to control the overproduction of hydrogen peroxide and alleviates the negative consequences on electrolyte leakage and gas exchange. In relation to B supply, this study proved that sufficient level promoted better responses under control and water deficit conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


Sign in / Sign up

Export Citation Format

Share Document