Supplementary material to "Geochemical zones and environmental gradients for soils from the Central Transantarctic Mountains, Antarctica"

Author(s):  
Melisa A. Diaz ◽  
Christopher B. Gardner ◽  
Susan A. Welch ◽  
W. Andrew Jackson ◽  
Byron J. Adams ◽  
...  
2021 ◽  
Vol 18 (5) ◽  
pp. 1629-1644
Author(s):  
Melisa A. Diaz ◽  
Christopher B. Gardner ◽  
Susan A. Welch ◽  
W. Andrew Jackson ◽  
Byron J. Adams ◽  
...  

Abstract. Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (∼ 85∘ S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), its central part (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80 000 µg g−1, while the lower zone had the lowest water-soluble N:P ratios, suggesting that, in addition to other parameters (such as proximity to water and/or ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our random forest model predictions was moderately high with R2 values for total water-soluble salts, water-soluble N:P, ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.


2020 ◽  
Author(s):  
Melisa A. Diaz ◽  
Christopher B. Gardner ◽  
Susan A. Welch ◽  
W. Andrew Jackson ◽  
Byron J. Adams ◽  
...  

Abstract. Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the Central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (~ 85 °S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), central (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80,000 µg g-1, while the lower zone had the lowest water-soluble N : P ratios, suggesting that, in addition to other parameters (such as proximity to water/ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry with geographic parameters, we established multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our model predictions was moderately high, with R2 values for total water-soluble salts, water-soluble N : P, ClO4-, and ClO3- of 0.51, 0.42, 0.40, and 0.28, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.


2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document