scholarly journals Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers

2006 ◽  
Vol 3 (2) ◽  
pp. 175-185 ◽  
Author(s):  
S. Bouillon ◽  
H. T. S. Boschker

Abstract. Coastal ecosystems are typically highly productive, and the sediments in these systems receive organic matter from a variety of local and imported sources. To assess if general patterns are present in the origin of carbon sources for sedimentary bacteria and their relation to the origin of the sediment organic carbon pool, we compiled both literature and new data on δ13C of bacterial biomarkers (the phospholipid derived fatty acids i+a15:0), along with δ13C data on sediment organic carbon (δ13CTOC) and macrophyte biomass from a variety of typical near-coastal systems. These systems included mangroves, salt marshes (both C3 and C4-dominated sites), seagrass beds, and macroalgae-based systems, as well as unvegetated sediments. First, our δ13Ci+a15:0 data showed large variability over the entire range of δ13CTOC, indicating that in many settings, bacteria may depend on carbon derived from various origins. Secondly, systems where local macrophyte production is the major supplier of organic carbon for in situ decomposition are generally limited to organic carbon-rich, peaty sites (TOC>10 wt%), which are likely to make up only a small part of the global area of vegetated coastal systems. These carbon-rich sediments also provided a field based estimate of isotopic fractionation between bacterial carbon sources and biomarkers (-3.7±2.1), which is similar to the expected value of about -3 associated with the biosynthesis of fatty acids. Thirdly, only in systems with low TOC (below ~1 wt%), we consistently found that bacteria were selectively utilizing an isotopically enriched carbon source, which may be root exudates but more likely is derived from microphytobenthos. In other systems with between ~1 and 10 wt% TOC, bacteria appear to show on average little selectivity and δ13Ci+a15:0 data generally follow the δ13CTOC, even in systems where the TOC is a mixture of algal and macrophyte sources that generally are believed to have a very different degradability.

2005 ◽  
Vol 2 (5) ◽  
pp. 1617-1644 ◽  
Author(s):  
S. Bouillon ◽  
H. T. S. Boschker

Abstract. Coastal ecosystems are typically highly productive, and recieve organic matter from a variety of local and imported sources. To assess if general patterns are present in the origin of carbon sources for sedimentary bacteria and their relation to the origin of the sediment organic carbon pool, we compiled both literature and new data on δ13C of bacterial biomarker PLFA (the phospholipid derived fatty acids i+a15:0) along with δ13C data on sediment organic carbon δ13CTOC and macrophyte biomass. Such data were collected from a variety of typical near-coastal systems, including mangroves, salt marshes (both C3 and C4-dominated sites), seagrass beds, and macroalgae-based systems, as well as unvegetated sediments. First, our δ13Ci+a15:0 data showed a large variability over the entire range of δ13CTOC, indicating that in many settings, bacteria may depend on carbon derived from various origins. Secondly, systems where local macrophyte production is the major supplier of organic carbon for in situ decomposition are generally limited to organic carbon-rich, peaty sites (TOC>10 wt%) which are likely to make up only a small part of the global area of vegetated coastal systems. These carbon-rich sediments also provided a field based estimate of isotopic fractionation in bacterial lipid synthesis (-3.7±2.1), that is similar to the expected value. Thirdly, only in systems with low TOC (below ~1 wt%), we consistently found that bacteria were on average selectively utilizing an isotopically enriched carbon source, which may be root exudates but more likely is derived from microphytobenthos. In other systems with between ~1 and 10 wt% TOC, bacteria appear to show on average little selectivity and δ13Ci+a15:0 data generally follow the δ13CTOC, even in systems where the TOC is a mixture of algal and macrophyte sources that generally are believed to have a very different degradability.


Radiocarbon ◽  
1983 ◽  
Vol 25 (3) ◽  
pp. 810-830 ◽  
Author(s):  
Glenn A Goodfriend ◽  
Darden G Hood

13C and 14C analyses were performed on a series of modern Jamaican land snails in order to quantitatively determine the sources of shell carbon. A model of these carbon sources, the pathways by which carbon reaches the shell, and the fractionation processes involved are presented. The contribution of limestone to shell carbonate is variable but may comprise up to 33% of the shell. About 25–40% of shell carbonate is derived from plants and about 30–60% from atmospheric CO2. Variation among populations and species with respect to 13C and 14C is attributed to the effects of limestone incorporation, snail size (as it affects CO2 exchange rate), physiological characteristics (presence of urease, respiration rate), and activity patterns of the snails. A formula for correction for isotopic fractionation of 14C of shell carbonate, based on 13C measurements, is derived. Bicarbonate-aragonite fractionation is apparently very minimal. Shell organic carbon appears to be derived largely from plants but also to a lesser extent from inorganic hemolymph carbon. This introduces the possibility of a small age anomaly of shell organic 14C due to limestone incorporation.


1994 ◽  
Vol 15 (5) ◽  
pp. 459-467 ◽  
Author(s):  
S. Fass ◽  
V. Ganaye ◽  
V. Urbain ◽  
J. Manem ◽  
J.C. Block

2004 ◽  
Vol 60 (1) ◽  
pp. 59-68 ◽  
Author(s):  
H. Kennedy ◽  
E. Gacia ◽  
D.P. Kennedy ◽  
S. Papadimitriou ◽  
C.M. Duarte

Wetlands ◽  
2018 ◽  
Vol 39 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Thanamegam Kaviarasan ◽  
Hans Uwe Dahms ◽  
Murugaiah Santhosh Gokul ◽  
Santhaseelan Henciya ◽  
Krishnan Muthukumar ◽  
...  

2013 ◽  
Vol 58 (2) ◽  
pp. 593-612 ◽  
Author(s):  
Laura Carreón-Palau ◽  
Christopher C. Parrish ◽  
Jorge A. del Angel-Rodríguez ◽  
Horacio Pérez-España ◽  
Sergio Aguiñiga-García

2020 ◽  
Vol 64 (4) ◽  
pp. 347-363
Author(s):  
Evelyn M. Keaveney ◽  
Alan D. Radbourne ◽  
Suzanne McGowan ◽  
David B. Ryves ◽  
Paula J. Reimer

Abstract We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried.


Sign in / Sign up

Export Citation Format

Share Document