scholarly journals Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

2008 ◽  
Vol 5 (3) ◽  
pp. 693-705 ◽  
Author(s):  
I. Obernosterer ◽  
P. Catala ◽  
R. Lami ◽  
J. Caparros ◽  
J. Ras ◽  
...  

Abstract. The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7-fold), and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m). The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76%) to those in surface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation) was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in surface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers.

2007 ◽  
Vol 4 (4) ◽  
pp. 2809-2844 ◽  
Author(s):  
I. Obernosterer ◽  
P. Catala ◽  
R. Lami ◽  
J. Caparros ◽  
J. Ras ◽  
...  

Abstract. The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7), and POC:PON ratios were consistently higher in the surface microlayer as compared to subsurface waters (5 m). The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76%) to those in subsurface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation) was consistently lower in the surface microlayer than in subsurface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in subsurface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. However, even short time periods in the surface microlayer result in differences in bacterial groups accounting for leucine incorporation, probably as a response to the differences in the physical and chemical nature of the two layers.


2018 ◽  
Vol 15 (12) ◽  
pp. 3893-3908 ◽  
Author(s):  
Dina Spungin ◽  
Natalia Belkin ◽  
Rachel A. Foster ◽  
Marcus Stenegren ◽  
Andrea Caputo ◽  
...  

Abstract. The fate of diazotroph (N2 fixers) derived carbon (C) and nitrogen (N) and their contribution to vertical export of C and N in the western tropical South Pacific Ocean was studied during OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment). Our specific objective during OUTPACE was to determine whether autocatalytic programmed cell death (PCD), occurring in some diazotrophs, is an important mechanism affecting diazotroph mortality and a factor regulating the vertical flux of organic matter and, thus, the fate of the blooms. We sampled at three long duration (LD) stations of 5 days each (LDA, LDB and LDC) where drifting sediment traps were deployed at 150, 325 and 500 m depth. LDA and LDB were characterized by high chlorophyll a (Chl a) concentrations (0.2–0.6 µg L−1) and dominated by dense biomass of the filamentous cyanobacterium Trichodesmium as well as UCYN-B and diatom–diazotroph associations (Rhizosolenia with Richelia-detected by microscopy and het-1 nifH copies). Station LDC was located at an ultra-oligotrophic area of the South Pacific gyre with extremely low Chl a concentration (∼ 0.02 µg L−1) with limited biomass of diazotrophs predominantly the unicellular UCYN-B. Our measurements of biomass from LDA and LDB yielded high activities of caspase-like and metacaspase proteases that are indicative of PCD in Trichodesmium and other phytoplankton. Metacaspase activity, reported here for the first time from oceanic populations, was highest at the surface of both LDA and LDB, where we also obtained high concentrations of transparent exopolymeric particles (TEP). TEP were negatively correlated with dissolved inorganic phosphorus and positively coupled to both the dissolved and particulate organic carbon pools. Our results reflect the increase in TEP production under nutrient stress and its role as a source of sticky carbon facilitating aggregation and rapid vertical sinking. Evidence for bloom decline was observed at both LDA and LDB. However, the physiological status and rates of decline of the blooms differed between the stations, influencing the amount of accumulated diazotrophic organic matter and mass flux observed in the traps during our experimental time frame. At LDA sediment traps contained the greatest export of particulate matter and significant numbers of both intact and decaying Trichodesmium, UCYN-B and het-1 compared to LDB where the bloom decline began only 2 days prior to leaving the station and to LDC where no evidence for bloom or bloom decline was seen. Substantiating previous findings from laboratory cultures linking PCD to carbon export in Trichodesmium, our results from OUTPACE indicate that nutrient limitation may induce PCD in high biomass blooms such as displayed by Trichodesmium or diatom–diazotroph associations. Furthermore, PCD combined with high TEP production will tend to facilitate cellular aggregation and bloom termination and will expedite vertical flux to depth.


2014 ◽  
Vol 8 (10) ◽  
pp. 1962-1973 ◽  
Author(s):  
Pia H Moisander ◽  
Tracy Serros ◽  
Ryan W Paerl ◽  
Roxanne A Beinart ◽  
Jonathan P Zehr

2008 ◽  
Vol 5 (1) ◽  
pp. 157-169 ◽  
Author(s):  
F. Van Wambeke ◽  
I. Obernosterer ◽  
T. Moutin ◽  
S. Duhamel ◽  
O. Ulloa ◽  
...  

Abstract. Spatial variation of heterotrophic bacterial production and phytoplankton primary production were investigated across the eastern South Pacific Ocean (−141° W, −8° S to −72° W, −35° S) in November–December 2004. Bacterial production (3H leucine incorporation) integrated over the euphotic zone encompassed a wide range of values, from 43 mg C m−2 d−1 in the hyper-oligotrophic South Pacific Gyre to 392 mg C m−2 d−1 in the upwelling off Chile. In the gyre (120° W, 22° S) records of low phytoplankton biomass (7 mg Total Chla m−2) were obtained and fluxes of in situ 14C-based particulate primary production were as low as 153 mg C m−2 d−1, thus equal to the value considered as a limit for primary production under strong oligotrophic conditions. Average rates of 3H leucine incorporation rates, and leucine incorporation rates per cell (5–21 pmol l−1 h−1 and 15–56×10−21 mol cell−1 h−1, respectively) determined in the South Pacific gyre, were in the same range as those reported for other oligotrophic subtropical and temperate waters. Fluxes of dark community respiration, determined at selected stations across the transect varied in a narrow range (42–97 mmol O2 m−2 d−1), except for one station in the upwelling off Chile (245 mmol O2 m−2 d−1). Bacterial growth efficiencies varied between 5 and 38%. Bacterial carbon demand largely exceeded 14C particulate primary production across the South Pacific Ocean, but was lower or equal to gross community production.


2018 ◽  
Author(s):  
Dina Spungin ◽  
Natalia Belkin ◽  
Rachel Foster ◽  
Marcus Stenegren ◽  
Andrea Caputo ◽  
...  

Abstract. The fate of diazotroph (N2 fixers) derived carbon (C) and nitrogen (N) and their contribution to vertical export of C and N in the Western Tropical South Pacific Ocean was studied in OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment). Our specific objective during OUTPACE was to determine whether autocatalytic programmed cell death (PCD) is an important mechanism affecting diazotroph mortality and a factor regulating the vertical flux of organic matter and thus the fate of the blooms. We sampled at three long duration (LD) stations of 5 days each (LDA, LDB, and LDC) where drifting sediment traps were deployed at 150, 325 and 500 m depths. LDA and LDB were characterized by high chlorophyll a (Chl a) concentrations (0.2–0.6 µg L−1) and dominated by dense biomass of Trichodesmium as well as UCYN-B and diatom-diazotroph associations (Rhizosolenia with Richelia-detected by microscopy and het-1 nifH copies). Station LDC was located at an ultra-oligotrophic area of the South Pacific gyre with extremely low Chl a concentration (~ 0.02 µg L−1) with limited biomass of diazotrophs predominantly the unicellular UCYN-B. Our measurements of biomass from LDA and LDB yielded high activities of caspase-like and metacaspase proteases that are indicative of PCD in Trichodesmium and other phytoplankton. Metacaspase activity, reported here for the first time from oceanic populations, was highest at the surface of both LDA and LDB, where we also obtained high concentrations of transparent exopolymeric particles (TEP). TEP was negatively correlated with dissolved inorganic phosphorus and positively coupled to both the DOC and POC pools reflecting the typically high production of TEP under nutrient stress and its role as a source of sticky carbon facilitating aggregation and rapid vertical sinking. Evidence for bloom decline was observed at both LDA and LDB. However, the physiological status and rates of decline of the blooms differed between the stations, influencing the amount of accumulated diazotrophic organic matter and mass flux observed in the traps during our experimental time frame. At LDA sediment traps contained the greatest export of particulate matter and significant numbers of both intact and decaying Trichodesmium, UCYN-B, and het-1 compared to LDB where the bloom decline began only 2 days prior to leaving the station and to LDC where no evidence for bloom decline was seen. Substantiating previous findings from laboratory cultures linking PCD to carbon export in Trichodesmium, our results from OUTPACE indicate that induction of PCD by nutrient limitation in high biomass blooms such as Trichodesmium or diatom-diazotroph associations combined with high TEP production facilitates cellular aggregation and bloom termination, and expedites vertical flux to depth.


Sign in / Sign up

Export Citation Format

Share Document