scholarly journals Temporal variability of carbon recycling in coastal sediments influenced by rivers: assessing the impact of flood inputs in the Rhône River prodelta

2010 ◽  
Vol 7 (3) ◽  
pp. 1187-1205 ◽  
Author(s):  
C. Cathalot ◽  
C. Rabouille ◽  
L. Pastor ◽  
B. Deflandre ◽  
E. Viollier ◽  
...  

Abstract. River deltas are particularly important in the marine carbon cycle as they represent the transition between terrestrial and marine carbon: linked to major burial zones, they are reprocessing zones where large carbon fluxes can be mineralized. In order to estimate this mineralization, sediment oxygen uptake rates were measured in continental shelf sediments and river prodelta over different seasons near the outlet of the Rhône River in the Mediterranean Sea. On a selected set of 10 stations in the river prodelta and nearby continental shelf, in situ diffusive oxygen uptake (DOU) and laboratory total oxygen uptake (TOU) measurements were performed in early spring and summer 2007 and late spring and winter 2008. In and ex situ DOU did not show any significant differences except for shallowest organic rich stations. Sediment DOU rates show highest values concentrated close to the river mouth (approx. 20 mmol O2 m−2 d−1) and decrease offshore to values around 4.5 mmol O2 m−2 d−1 with lowest gradients in a south west direction linked to the preferential transport of the finest riverine material. Core incubation TOU showed the same spatial pattern with an averaged TOU/DOU ratio of 1.2±0.4. Temporal variations of sediment DOU over different sampling periods, spring summer and late fall, were limited and benthic mineralization rates presented a stable spatial pattern. A flood of the Rhône River occurred in June 2008 and delivered up to 30 cm of new soft muddy deposit. Immediately after this flood, sediment DOU rates close to the river mouth dropped from around 15–20 mmol O2 m−2 d−1 to values close to 10 mmol O2 m−2 d−1, in response to the deposition near the river outlet of low reactivity organic matter associated to fine material. Six months later, the oxygen distribution had relaxed back to its initial stage: the initial spatial distribution was found again underlining the active microbial degradation rates involved and the role of further deposits. These results highlight the immediate response of the sediment oxygen system to flood deposit and the rapid relaxation of this system towards its initial state (6 months or less) potentially linked to further deposits of reactive material.

2009 ◽  
Vol 6 (6) ◽  
pp. 10775-10816
Author(s):  
C. Cathalot ◽  
C. Rabouille ◽  
L. Pastor ◽  
B. Deflandre ◽  
E. Viollier ◽  
...  

Abstract. The biogeochemical fate of the particulate organic inputs from the Rhône River was studied on a seasonal basis by measuring sediment oxygen uptake rates in the prodelta, both during normal and flood regimes. On a selected set of 10 stations in the prodelta and nearby continental shelf, in situ and laboratory measurements of sediment oxygen demand were performed in early spring and summer 2007 and late spring and winter 2008. In and ex situ sediment Diffusive Oxygen Uptakes (DOU) did not show any significant differences except for shallowest organic rich stations. DOU rates show highest values concentrated close to the river mouth (approx. 20 mmol O2 m-2 d-1) and decrease offshore to values around 4.5 mmol O2 m-2 d-1 preferentially in a south west direction, most likely as the result of the preferential transport of the finest riverine material. Total Oxygen Uptake (TOU) obtained from core incubation showed the same spatial pattern with an averaged TOU/DOU ratio of 1.2± 0.4. Over different seasons, spring summer and late fall, benthic mineralization rates presented this same stable spatial pattern. A flood of the Rhône River occurred in June 2008 and brought up to 30 cm of new soft muddy deposit. Right after this flood, sediment DOU rates close to the river mouth dropped from around 15–20 mmol O2 m-2 d-1 to values close to 10 mmol O2 m-2 d-1, in response to the deposition near the river outlet of low reactivity organic matter associated to fine material. Six months later, the oxygen distribution had relaxed back to its initial stage: the initial spatial distribution was found again underlining the active microbial degradation rates involved and the role of further deposits. These results highlight the rapid response to flood deposits in prodeltaic areas which may act as a suboxic sediment reactor and shorten the relaxation time.


2011 ◽  
Vol 8 (1) ◽  
pp. 549-592 ◽  
Author(s):  
L. Pastor ◽  
C. Cathalot ◽  
B. Deflandre ◽  
E. Viollier ◽  
K. Soetaert ◽  
...  

Abstract. In-situ oxygen microprofiles, sediment organic carbon content and pore-water concentrations of nitrate, ammonium, iron, manganese and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1) organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1), (2) burial efficiency (burial/input ratio) in the Rhône prodelta (within 3 km of the river outlet) can be up to 80%, and decreases to ~20% on the adjacent continental shelf 10–15 km further offshore (3) there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates, (4) diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97%) and buried in the sediment, which leads to (5) a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River Ocean dominated Margins (RiOMar) environments.


2011 ◽  
Vol 8 (5) ◽  
pp. 1351-1366 ◽  
Author(s):  
L. Pastor ◽  
C. Cathalot ◽  
B. Deflandre ◽  
E. Viollier ◽  
K. Soetaert ◽  
...  

Abstract. In situ oxygen microprofiles, sediment organic carbon content, and pore-water concentrations of nitrate, ammonium, iron, manganese, and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1) the organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1); (2) the burial efficiency (burial/input ratio) in the Rhône prodelta (within 3 km of the river outlet) can be up to 80 %, and decreases to ~20 % on the adjacent continental shelf 10–15 km further offshore; (3) there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates; (4) diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97 %) and buried in the sediment, which leads to (5) a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River-dominated Ocean Margins (RiOMar) environments.


2020 ◽  
Author(s):  
Carla Taricco ◽  
Sara Rubinetti ◽  
Enrico Arnone ◽  
Davide Zanchettin ◽  
Angelo Rubino ◽  
...  

<p>River discharge series provide large-scale hydrological information over a broad range of timescales. Despite discharge records consist of punctual measurements, they integrate variations in snowmelting, precipitation and runoff processes over the catchment till the discharge measurement site.</p><p>Discharges of the Rhone River, one of the largest rivers in Europe, have been monitored accurately during the last century at different sites. Long discharge records from seven stations along the course reveal the spatial and temporal behaviour of discharges from the source of the river to its mouth.  An accurate spectral analysis of the records, performed using advanced spectral analysis methods, allow us to extract significant periodic variations in the records at different temporal scales. Then, we analyse the sensitivity of such periodic variations to evolving hydroclimate conditions, in particular focusing on the relationship between discharge and temperature and precipitation.</p><p>The strong annual oscillation recorded at stations close to the source is almost entirely due to snow melting on alpine glaciers, closely resembling the temperature annual cycle. This remarkable agreement allows to consider the upstream discharges as a thermometer on the glacier region during the melting season. On the contrary, the decrease of the annual cycle going towards the mouth of the river and the contemporary growth of interannual components demonstrates the transition from a temperature to a precipitation controlled discharge regime.</p><p>We will finally discuss the impact of large-scale variability patterns on the detected discharge variations and associated implications for their near-term predictability.</p>


2003 ◽  
Vol 26 (4) ◽  
pp. 311-321 ◽  
Author(s):  
Walid A.N Younes ◽  
Nathaniel Bensoussan ◽  
Jean-Claude Romano ◽  
Denise Arlhac ◽  
Michel-Guy Lafont

2020 ◽  
Vol 17 (1) ◽  
pp. 13-33 ◽  
Author(s):  
Jens Rassmann ◽  
Eryn M. Eitel ◽  
Bruno Lansard ◽  
Cécile Cathalot ◽  
Christophe Brandily ◽  
...  

Abstract. Estuarine regions are generally considered a major source of atmospheric CO2, as a result of the high organic carbon (OC) mineralization rates in their water column and sediments. Despite this, the intensity of anaerobic respiration processes in the sediments tempered by the reoxidation of reduced metabolites near the sediment–water interface controls the flux of benthic alkalinity. This alkalinity may partially buffer metabolic CO2 generated by benthic OC respiration in sediments. Thus, sediments with high anaerobic respiration rates could contribute less to local acidification than previously thought. In this study, a benthic chamber was deployed in the Rhône River prodelta and the adjacent continental shelf (Gulf of Lion, northwestern Mediterranean) in late summer to assess the fluxes of total alkalinity (TA) and dissolved inorganic carbon (DIC) from the sediment. Concurrently, in situ O2 and pH micro-profiles, voltammetric profiles and pore water composition were measured in surface sediments to identify the main biogeochemical processes controlling the net production of alkalinity in these sediments. Benthic TA and DIC fluxes to the water column, ranging between 14 and 74 and 18 and 78 mmol m−2 d−1, respectively, were up to 8 times higher than dissolved oxygen uptake (DOU) rates (10.4±0.9 mmol m−2 d−1) close to the river mouth, but their intensity decreased offshore, as a result of the decline in OC inputs. In the zone close to the river mouth, pore water redox species indicated that TA and DIC were mainly produced by microbial sulfate and iron reduction. Despite the complete removal of sulfate from pore waters, dissolved sulfide concentrations were low and significant concentrations of FeS were found, indicating the precipitation and burial of iron sulfide minerals with an estimated burial flux of 12.5 mmol m−2 d−1 near the river mouth. By preventing reduced iron and sulfide reoxidation, the precipitation and burial of iron sulfide increases the alkalinity release from the sediments during the spring and summer months. Under these conditions, the sediment provides a net source of alkalinity to the bottom waters which mitigates the effect of the benthic DIC flux on the carbonate chemistry of coastal waters and weakens the partial pressure of CO2 increase in the bottom waters that would occur if only DIC was produced.


Sign in / Sign up

Export Citation Format

Share Document