scholarly journals Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific Oxygen Minimum Zones

2012 ◽  
Vol 9 (1) ◽  
pp. 203-215 ◽  
Author(s):  
E. Ryabenko ◽  
A. Kock ◽  
H. W. Bange ◽  
M. A. Altabet ◽  
D. W. R. Wallace

Abstract. We present new data for the stable isotope ratio of inorganic nitrogen species from the contrasting oxygen minimum zones (OMZs) of the Eastern Tropical North Atlantic, south of Cape Verde, and the Eastern Tropical South Pacific off Peru. Differences in minimum oxygen concentration and corresponding N-cycle processes for the two OMZs are reflected in strongly contrasting δ15N distributions. Pacific surface waters are marked by strongly positive values for δ15N-NO3–) reflecting fractionation associated with subsurface N-loss and partial NO3– utilization. This contrasts with negative values in NO3– depleted surface waters of the Atlantic which are lower than can be explained by N supply via N2 fixation. We suggest the negative values reflect inputs of nitrate, possibly transient, associated with deposition of Saharan dust. Strong signals of N-loss processes in the subsurface Pacific OMZ are evident in the isotope and N2O data, both of which are compatible with a contribution of canonical denitrification to overall N-loss. However the apparent N isotope fractionation factor observed is relatively low (&amp;varepsilon;d=11.4 ‰) suggesting an effect of influence from denitrification in sediments. Identical positive correlation of N2O vs. AOU for waters with oxygen concentrations ([O2] < 5 μmol l−1) in both regions reflect a nitrification source. Sharp decrease in N2O concentrations is observed in the Pacific OMZ due to denitrification under oxygen concentrations O2 < 5 μmol l−1.

2011 ◽  
Vol 8 (4) ◽  
pp. 8001-8039 ◽  
Author(s):  
E. Ryabenko ◽  
A. Kock ◽  
H. W. Bange ◽  
M. A. Altabet ◽  
D. W. R. Wallace

Abstract. We present new data for the stable isotope ratio of inorganic nitrogen species from the contrasting oxygen minimum zones (OMZs) of the Eastern Tropical North Atlantic, south of Cape Verde, and the Eastern Tropical South Pacific off Peru. Differences in minimum oxygen concentration and corresponding N-cycle processes for the two OMZs are reflected in strongly contrasting δ15N distributions. Pacific surface waters are marked by strongly positive values for δ15N-NO3− reflecting fractionation associated with subsurface N-loss and partial NO3− utilization. This contrasts with negative values in NO3− depleted surface waters of the Atlantic which are lower than can be explained by N supply via N2 fixation. We suggest the negative values reflect inputs of nitrate, possibly transient, associated with deposition of Saharan dust. Strong signals of N-loss processes in the subsurface Pacific OMZ are evident in the isotope and N2O data, both of which are compatible with a contribution of canonical denitrification to overall N-loss. However the apparent N isotope fractionation factor observed is relatively low (εd = 11.4 ‰) suggesting an effect of influence from denitrification in sediments. Identical positive correlation of N2O vs. AOU for waters with oxygen concentrations [O2] > 50 μmol l−1 in both regions reflect a nitrification source. Sharp decrease in N2O concentrations is observed in the Pacific OMZ due to denitrification under oxygen concentrations O2 < 5 μmol l−1.


2009 ◽  
Vol 7 (5) ◽  
pp. 371-381 ◽  
Author(s):  
Niels Peter Revsbech ◽  
Lars Hauer Larsen ◽  
Jens Gundersen ◽  
Tage Dalsgaard ◽  
Osvaldo Ulloa ◽  
...  

2009 ◽  
Vol 6 (10) ◽  
pp. 2063-2098 ◽  
Author(s):  
L. A. Levin ◽  
W. Ekau ◽  
A. J. Gooday ◽  
F. Jorissen ◽  
J. J. Middelburg ◽  
...  

Abstract. Coastal hypoxia (defined here as <1.42 ml L−1; 62.5 μM; 2 mg L−1, approx. 30% oxygen saturation) develops seasonally in many estuaries, fjords, and along open coasts as a result of natural upwelling or from anthropogenic eutrophication induced by riverine nutrient inputs. Permanent hypoxia occurs naturally in some isolated seas and marine basins as well as in open slope oxygen minimum zones. Responses of benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide. They are hypothesized to provide a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L−1, typically involve avoidance or mortality of large species and elevated abundances of enrichment opportunists, sometimes prior to population crashes. Areas of low oxygen persist seasonally or continuously beneath upwelling regions, associated with the upper parts of oxygen minimum zones (SE Pacific, W Africa, N Indian Ocean). These have a distribution largely distinct from eutrophic areas and support a resident fauna that is adapted to survive and reproduce at oxygen concentrations <0.5 ml L−1. Under both natural and eutrophication-caused hypoxia there is loss of diversity, through attrition of intolerant species and elevated dominance, as well as reductions in body size. These shifts in species composition and diversity yield altered trophic structure, energy flow pathways, and corresponding ecosystem services such as production, organic matter cycling and organic C burial. Increasingly the influences of nature and humans interact to generate or exacerbate hypoxia. A warmer ocean is more stratified, holds less oxygen, and may experience greater advection of oxygen-poor source waters, making new regions subject to hypoxia. Future understanding of benthic responses to hypoxia must be established in the context of global climate change and other human influences such as overfishing, pollution, disease, habitat loss, and species invasions.


2018 ◽  
Author(s):  
Insa Rapp ◽  
Christian Schlosser ◽  
Jan-Lukas Menzel Barraqueta ◽  
Bernhard Wenzel ◽  
Jan Lüdke ◽  
...  

Abstract. The availability of the micronutrient iron (Fe) in surface waters determines primary production, N2 fixation and microbial community structure in large parts of the world's ocean, and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling systems and the connected oxygen minimum zones (OMZs) are typically associated with elevated concentrations of redox-sensitive trace metals (e.g. Fe, manganese (Mn) and cobalt (Co)), with shelf sediments typically forming a key source. Over the last five decades, an expansion and intensification of OMZs has been observed and this trend is likely to proceed. However, it is unclear how trace metal (TM) distributions and transport are influenced by decreasing oxygen (O2) concentrations. Here we present dissolved (d;  0.2 μm) TM data collected at 7 stations along a 50 km transect in the Mauritanian shelf region. We observed enhanced concentrations of Fe, Co and Mn corresponding with low O2 concentrations (


2020 ◽  
Author(s):  
Amal Jayakumar ◽  
Bess B. Ward

Abstract. Diversity and community composition of nitrogen fixing microbes in the three main oxygen minimum zones (OMZs) of the world ocean were investigated using operational taxonomic unit (OTU) analysis of nifH clone libraries. Representatives of the all four main clusters of nifH genes were detected. Cluster I sequences were most diverse in the surface waters and the most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. Cluster II, III, IV assemblages were most diverse at oxygen depleted depths and none of the sequences were closely related to sequences from cultivated organisms. The OTUs were biogeographically distinct for the most part – there was little overlap among regions, between depths or between cDNA and DNA. Only a few cyanobacterial sequences were detected. The prevalence and diversity of microbes that harbour nifH genes in the OMZ regions, where low rates of N fixation are reported, remains an enigma.


2013 ◽  
Vol 10 (6) ◽  
pp. 9451-9492 ◽  
Author(s):  
L. A. Levin ◽  
A. L. McGregor ◽  
G. F. Mendoza ◽  
C. Woulds ◽  
P. Cross ◽  
...  

Abstract. There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied in both the Western and Eastern Arabian Sea; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on short-term settlement patterns we conducted colonization experiments along two cross-OMZ transects on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (16°58′ N) and for 9 days at 817 m and 1147 m (17°31′ N). Oxygen concentrations ranged from 0.9 μM (0.02 mL L−1) at 542 m to 22 μM (0.5 mL L−1) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained 13C/15N-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m for analysis of background (source) macrofaunal (> 300 μm) densities and composition. Background densities ranged from 0 ind. m−2 (at 535–542 m) to 7400 ind. m−2, with maximum values on both transects at 700–800 m. Macrofaunal colonizer densities ranged from 0 ind. m−2 at 542 m, where oxygen was lowest, to average values of 142 ind. m−2 at 800 m, and 3074 ind. m−2 at 1147 m, where oxygen concentration was highest. These were equal to 4.3% and 151% of the ambient background community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147m; 88.5% of these were Capitella sp., although they were rare in the background community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of δ13C/ δ15N-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated site. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance.


2014 ◽  
Vol 11 (8) ◽  
pp. 12069-12136 ◽  
Author(s):  
P. Brandt ◽  
D. Banyte ◽  
M. Dengler ◽  
S.-H. Didwischus ◽  
T. Fischer ◽  
...  

Abstract. Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.


2020 ◽  
Vol 17 (23) ◽  
pp. 5953-5966
Author(s):  
Amal Jayakumar ◽  
Bess B. Ward

Abstract. Diversity and community composition of nitrogen (N) fixing microbes in the three main oxygen minimum zones (OMZs) of the world ocean were investigated using operational taxonomic unit (OTU) analysis of nifH clone libraries. Representatives of three of the four main clusters of nifH genes were detected. Cluster I sequences were most diverse in the surface waters, and the most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. Cluster II, III, and IV assemblages were most diverse at oxygen-depleted depths, and none of the sequences were closely related to sequences from cultivated organisms. The OTUs were biogeographically distinct for the most part – there was little overlap among regions, between depths, or between cDNA and DNA. In this study of all three OMZ regions, as well as from the few other published reports from individual OMZ sites, the dominance of a few OTUs was commonly observed. This pattern suggests the dynamic response of the components of the overall diverse assemblage to variable environmental conditions. Community composition in most samples was not clearly explained by environmental factors, but the most abundant OTUs were differentially correlated with the obvious variables, temperature, salinity, oxygen, and nitrite concentrations. Only a few cyanobacterial sequences were detected. The prevalence and diversity of microbes that harbor nifH genes in the OMZ regions, where low rates of N fixation are reported, remains an enigma.


2015 ◽  
Vol 12 (2) ◽  
pp. 489-512 ◽  
Author(s):  
P. Brandt ◽  
H. W. Bange ◽  
D. Banyte ◽  
M. Dengler ◽  
S.-H. Didwischus ◽  
...  

Abstract. Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m in depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m in depth, with the lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal timescales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ, the eastern tropical South Pacific OMZ shows a similar structure, including an equatorial oxygen maximum driven by zonal advection but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.


2013 ◽  
Vol 10 (11) ◽  
pp. 7161-7177 ◽  
Author(s):  
L. A. Levin ◽  
A. L. McGregor ◽  
G. F. Mendoza ◽  
C. Woulds ◽  
P. Cross ◽  
...  

Abstract. There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on short-term settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1–16°58' N) and for 9 days at 817 and 1147 m (transect 2–17°31' N). Oxygen concentrations ranged from 0.9 μM (0.02 mL L−1) at 542 m to 22 μM (0.5 mL L−1) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained 13C/15N-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (>300 μm) densities and composition. Ambient macrofaunal densities ranged from 0 ind m−2 (at 535–542 m) to 7400 ind m−2, with maximum values on both transects at 700–800 m. Macrofaunal colonizer densities ranged from 0 ind m−2 at 542 m, where oxygen was lowest, to average values of 142 ind m−2 at 800 m, and 3074 ind m−2 at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of 13C/15N-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.


Sign in / Sign up

Export Citation Format

Share Document