abundant otus
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 32)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Loren Billet ◽  
Stéphane Pesce ◽  
Fabrice Martin-Laurent ◽  
Marion Devers-Lamrani

Abstract The fertilization of agricultural soil by organic amendment that may contain antibiotics, like manure, can transfer bacterial pathogens and antibiotic-resistant bacteria to soil communities. However, the invasion by manure-borne bacteria in amended soil remains poorly understood, being hardly observed. Here, we assessed the invasions of manure-borne bacteria during a coalescence event between manure and soil, in different soils and in the presence or absence of antibiotics. To this end, microcosms of four different soils were amended or not with manure at an agronomical dose and/or exposed or not to the antibiotic sulfamethazine (SMZ). After one month of incubation, the diversity, structure and composition of bacterial communities of the soils were assessed by 16S rDNA sequencing. The invasion of manure-borne bacteria was still perceptible one month after the soil amendment. The results obtained with the soil already amended in situ with manure six months prior to the experiment suggest that some of the bacterial invaders were established in the community over the long term. Even if differences were observed between soils, the invasion was mainly attributable to some of the most abundant OTUs of manure (mainly Firmicutes). SMZ exposure had a limited influence on soil microorganisms. It was significant in only one soil, where it enhanced the invasion potential of some manure-borne invaders.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12705
Author(s):  
Guangjie Fang ◽  
Haolin Yu ◽  
Huaxiang Sheng ◽  
Chuanxi Chen ◽  
Yanli Tang ◽  
...  

Marine bacteria in the seawater and seafloor are essential parts of Earth’s biodiversity, as they are critical participants of the global energy flow and the material cycles. However, their spatial-temporal variations and potential interactions among varied biotopes in artificial habitat are poorly understood. In this study, we profiled the variations of bacterial communities among seasons and areas in the water and sediment of artificial reefs using 16S rRNA gene sequencing, and analyzed the potential interaction patterns among microorganisms. Distinct bacterial community structures in the two biotopes were exhibited. The Shannon diversity and the richness of phyla in the sediment were higher, while the differences among the four seasons were more evident in the water samples. The seasonal variations of bacterial communities in the water were more distinct, while significant variations among four areas were only observed in the sediment. Correlation analysis revealed that nitrite and mud content were the most important factors influencing the abundant OTUs in the water and sediment, respectively. Potential interactions and keystone species were identified based on the three co-occurrence networks. Results showed that the correlations among bacterial communities in the sediment were lower than in the water. Besides, the abundance of the top five abundant species and five keystone species had different changing patterns among four seasons and four areas. These results enriched our understanding of the microbial structures, dynamics, and interactions of microbial communities in artificial habitats, which could provide new insights into planning, constructing and managing these special habitats in the future.


2021 ◽  
Author(s):  
Gargi Das ◽  
Paltu Kumar Dhal

Abstract The present study attempted to analyse rice root endogenous microbial diversity and their relationship with soil salinity and physicochemical factors in the salt stressed region of Sundarbans, India using amplicon metagenomics approaches. Our investigation indicates, the unique microbiome at slightly acidic nutrient enriched non-saline zone characterized by microbial genera that reported either having plant growth promotion (Flavobacterium, Novosphingobium and Kocuria) or biocontrol abilities (Leptotrichia) whereas high ionic alkaline saline stressed zone dominated with either salt-tolerant microbes or less characterized endophytes (Arcobacter and Vogesella). The number of genera represented by significantly abundant OTUs was higher at the non-saline zone compared to that of the saline stressed zone probably due to higher nutrient concentrations and the absence of abiotic stress factors including salinity. Physicochemical parameters like nitrogen, phosphorus and potassium were found significantly positively correlated with Muribaculaceae highly enriched at the non-saline zone. However, relative dissolved oxygen was found significantly negatively correlated with Rikenellaceae and Desulfovibrionaceae, enriched in the non-saline soil. This study gives a well resolved picture of microbial community composition impacted by salinity and other rhizospheric soil factors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0256013
Author(s):  
Jun Mu ◽  
Yuxia Wang ◽  
Xia Cui ◽  
Qiao Yang

Ruditapes philippinarum conglutination mud (RPM) is a typical waste by-product from manila clam R. philippinarum aquaculture. However, RPM from the clam at an aquaculture farm in Zhoushan, China, has been newly reported as a promising natural bioflocculant resource that contains effective flocculating polysaccharides from the clam associated bacteria. With an intent to figure out whether RPM flocculation activity is ubiquitous to the manila clam across a wide geographical range or only the Zhoushan location, and to explore the flocculation production basis and ultimately widen its exploitation scope, in this study, an extensive survey of RPMs from four representative locations along the coast of China was performed to determine their flocculation activity, polysaccharide constitution and bacterial community composition. Frozen preserved RPM samples from Zhoushan, Dalian, Weihai and Zhanjiang exhibited comparable flocculation activities (FRs) ranging from 61.9±2.4% to 73.2±0.9% at dosage of 8 g·L-1; while fresh RPMs from Zhoushan exhibited a much higher flocculation activity of 91.34±1.18% than its frozen counterpart. Polysaccharide extracts from the four locations showed similar monosaccharide constitutions to some extent. The geographical distribution led to certain variation in bacterial community structures. The similarity clustering of the polysaccharide compositions coincided with that of bacterial community structures from RPMs, suggesting that polysaccharides and respective bacterial communities might be the foundation of the flocculation activity for all RPMs. The overlapping OTUs across all the RPMs accounted for 44.6–62.22% of the overall sequences in each sample and contained the vast majority of the most abundant OTUs (Operational Taxonomic Units), forming a common "core microbiome" that is probably responsible for polysaccharide production and flocculation activity development.


2021 ◽  
Vol 9 (11) ◽  
pp. 2349
Author(s):  
Shoji Takenaka ◽  
Naoki Edanami ◽  
Yasutaka Komatsu ◽  
Ryoko Nagata ◽  
Traithawit Naksagoon ◽  
...  

We performed a comprehensive microbiome analysis of root caries lesions using 22 teeth extracted from patients with severe periodontitis. The carious lesions were mechanically collected and cryo-pulverized following tooth extraction. Differences in the microbiome were compared between independent lesions at the supragingival site (SG) and lesions extending beyond the gingival margin (GCB). DNA was extracted and the microbiome was characterized on the basis of the V3-V4 hypervariable region of the 16S rRNA gene using paired-end sequencing on an Illumina MiSeq device. The microbiota in root caries lesions showed compositionally distinct microbiota depending on the location. The most abundant OTUs in the SG group were Streptococcus (26.0%), Actinomyces (10.6%), and Prevotella (7.6%). GCB presented Prevotella (11.1%) as the most abundant genus, followed by Fusobacterium (9.6%) and Actinomyces (8.7%). The SG group showed a lack of uniformity in microbiota compared with the GCB group. The bacterial profiles of GCB varied considerably among patients, including periodontal pathogens such as Porphyromonas, Selenomonas, Filifactor, Peptococcus, and Tannerella. Periodontal pathogens inhabit root caries lesions that extend beyond the gingival margin. This study provides a new perspective for elucidating the microbial etiology of root caries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jerzy Ostrowski ◽  
Maria Kulecka ◽  
Iwona Zawada ◽  
Natalia Żeber-Lubecka ◽  
Agnieszka Paziewska ◽  
...  

AbstractThe gastric microbiota in Crohn’s disease (CD) has not been studied. The purpose of the study was to evaluate differences of stomach microbiota between CD patients and controls. DNA was extracted from gastric mucosal and fluid samples, from 24 CD patients and 19 controls. 16S rRNA gene sequencing identified 1511 operational taxonomic units (OTUs), of which 239 passed the low abundance and low variance filters. All but one CD patients were HP negative. Fifteen bacterial phyla were identified in at least one mucosal or fluid site. Of these, Bacteroidota and Firmicutes accounted for 70% of all phyla. Proteobacteria, Actinobacteriota, and Fusobacteriota combined accounted for 27%. There was significant difference in the relative abundance of Bacteroidota, Proteobacteria, Fusobacteriota, and Campilobacterota between CD patients and controls only in gastric corpus samples. In gastric liquid, there was a significant difference only in Actinobacteriota. Pairwise comparison identified 67 differentially abundant OTUs in at least one site. Of these, 13 were present in more than one comparison, and four differentiating OTUs (Neisseriaceae, Neisseria, Absconditabacteriales, and Microbacteriaceae) were identified at all tested sites. The results reveal significant changes in gastric microbial profiles (beta diversity, phylum, and individual taxa levels) between H. pylori-negative CD patients and controls.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11230
Author(s):  
Yonglong Wang ◽  
Yanling Zhao ◽  
Ying Xu ◽  
Jianjun Ma ◽  
Busayo Joshua Babalola ◽  
...  

Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maximilian H. Ganser ◽  
Dominik Forster ◽  
Weiwei Liu ◽  
Xiaofeng Lin ◽  
Thorsten Stoeck ◽  
...  

Unraveling geographic distribution patterns of planktonic protists is a central goal in marine microbial ecology. Using a novel combination of recently developed phylogenetic and network analyses on a V4 18S rDNA metabarcoding dataset, we here analyzed the genetic diversity of marine planktonic ciliate communities in Chinese and European coastal waters. Thereby, our approach provided an unprecedented perspective on geographic patterns inferred from ciliate genetic diversity and accomplished a very fine resolution down to single nucleotides within operational taxonomic units (OTUs). While most OTUs (87%) exclusively contained sequences of either Chinese or European origin, those OTUs detected in both regions comprised the vast majority of reads (84%). Phylogenetic analyses of OTUs belonging to the same taxon revealed genetically distinct clades that were geographically restricted to either Chinese or European coastal waters. The detection of signature nucleotides emphasized this genetic distinction of Chinese and European clades. Second-level clustering of OTUs and reference sequences in two selected taxa (the oligotrichid Spirotontonia and the tintinnid Tintinnidium) revealed the presence of several potentially new species or ones lacking genetic reference data. Geographic patterns were also discovered by network analyses within 700 widespread and abundant OTUs; in 77 of these OTUs, European and Chinese sequences formed significantly assortative groups. These assortative groupings indicated a higher genetic similarity among sequences from the same region than between sequences from different regions. Our results demonstrate that detailed analyses of metabarcoding data down to single nucleotide differences expand our perception of geographical distribution patterns and provide insights into historic and ongoing effective dispersal in protists. The congruent discovery of geographic patterns at different levels of resolution (between and within OTUs) suggests that cosmopolitan distribution in marine planktonic ciliates is less common than previously postulated.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 327
Author(s):  
Guiqing Liu ◽  
Xuehong Zheng ◽  
Hailin Long ◽  
Zhongchen Rao ◽  
Li Cao ◽  
...  

By employing a culture-dependent and -independent 16S rRNA and ITS gene high-throughput sequencing analyses, comprehensive information was obtained on the gut bacterial and fungal communities in the ghost moth larvae of three different geographic locations from high-altitude on Tibet plateau and from low-altitude laboratory. Twenty-six culturable bacterial species belonging to 21 genera and 14 fungal species belonging to 12 genera were identified from six populations by culture-dependent method. Carnobacterium maltaromaticum was the most abundant bacterial species from both the wild and laboratory-reared larvae. The most abundant OTUs in the wild ghost moth populations were Carnobacteriaceae, Enterobacteriaceae for bacteria, and Ascomycota and Basidiomycota for fungi. Larval microbial communities of the wild ghost moth from different geographic locations were not significantly different from each other but significant difference in larval microbial community was detected between the wild and laboratory-reared ghost moth. The larval gut of the wild ghost moth was dominated by the culturable Carnobacterium. However, that of the laboratory-reared ghost moth exhibited significantly abundant Wolbachia, Rhizobium, Serratia, Pseudomonas, and Flavobacterium. Furthermore, the larval gut of the wild ghost moth had a significantly higher abundance of Ophiocordyceps but lower abundance of Candida and Aspergillus than that of the laboratory-reared ghost moth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amy L. Petry ◽  
John F. Patience ◽  
Nichole F. Huntley ◽  
Lucas R. Koester ◽  
Michael R. Bedford ◽  
...  

This research tested the hypothesis that xylanase modulates microbial communities within the large intestine of growing pigs fed corn-based fiber through a stimbiotic mechanism(s) of action (MOA). Sixty gilts were blocked by initial body weight, individually housed, and randomly assigned to one of four dietary treatments (n = 15): a low-fiber (LF) control, a high-fiber (HF) control containing 30% corn bran, HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan-oligosaccharide (HF+AX). Pigs were fed dietary treatments for 46 days. On day 46, pigs were euthanized, and mucosa and lumen contents were collected from the cecum and the colon. The V4 region of 16S rRNA genes was sequenced and clustered into 5,889, 4,657, 2,822, and 4,516 operational taxonomic units (OTUs), in the cecal contents and mucosa and colonic contents and mucosa, respectively. In cecal contents, HF+XY increased measures of α-diversity compared to LF (p < 0.001). Relative to LF, HF increased the prevalence of 44, 36, 26, and 8, and decreased 19, 9, 21, and 10, of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). Compared to LF, HF increased the abundance of OTUs from the Treponema_2, Ruminococcus_1 genera, from the Lachnospiraceae, Ruminococcaceae, and Prevotellaceae families. In contrast, relative to LF, HF decreased Turicibacter and Lactobacillus in the cecal contents, and Megasphaera and Streptococcus in the mucosa. Relative to HF, HF+XY increased 32, 16, 29, and 19 and decreased 27, 11, 15, and 10 of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). The addition of xylanase to HF further increased the abundance of OTUs from the Lachnospiraceae and Ruminococcaceae families across the large intestine. Compared to HF, HF+XY increased the abundance of Lactobacillus, Bifidobacterium, and Faecalibacterium among all locations (Q < 0.05). However, HF+AX did not increase the prevalence of these genera in the large intestine. Supplementing xylanase to HF increased hidden-state predictions of microbial enzymes associated with arabinoxylan degradation, xylose metabolism, and short-chain fatty acid production. These data suggest xylanase elicits a stimbiotic MOA in the large intestine of pigs fed corn-based fiber.


Sign in / Sign up

Export Citation Format

Share Document