scholarly journals Methanotrophic activity and diversity in different <i>Sphagnum magellanicum</i> dominated habitats in the southernmost peat bogs of Patagonia

2012 ◽  
Vol 9 (1) ◽  
pp. 47-55 ◽  
Author(s):  
N. Kip ◽  
C. Fritz ◽  
E. S. Langelaan ◽  
Y. Pan ◽  
L. Bodrossy ◽  
...  

Abstract. Sphagnum peatlands are important ecosystems in the methane cycle. Methanotrophs living inside the dead hyaline cells or on the Sphagnum mosses are able to act as a methane filter and thereby reduce methane emissions. We investigated in situ methane concentrations and the corresponding activity and diversity of methanotrophs in different Sphagnum dominated bog microhabitats. In contrast to the Northern Hemisphere peat ecosystems the temperate South American peat bogs are dominated by one moss species; Sphagnum magellanicum. This permitted a species-independent comparison of the different bog microhabitats. Potential methane oxidizing activity was found in all Sphagnum mosses sampled and a positive correlation was found between activity and in situ methane concentrations. Substantial methane oxidation activity (23 μmol CH4 gDW−1 day−1) was found in pool mosses and could be correlated with higher in situ methane concentrations (>35 μmol CH4 l−1 pore water). Little methanotrophic activity (<0.5 μmol CH4 gDW−1 day−1) was observed in living Sphagnum mosses from lawns and hummocks. Methane oxidation activity was relatively high (>4 μmol CH4 gDW−1 day−1) in Sphagnum litter at depths around the water levels and rich in methane. The total bacterial community was studied using 16S rRNA gene sequencing and the methanotrophic communities were studied using a pmoA microarray and a complementary pmoA clone library. The methanotrophic diversity was similar in the different habitats of this study and comparable to the methanotrophic diversity found in peat mosses from the Northern Hemisphere. The pmoA microarray data indicated that both alpha- and gammaproteobacterial methanotrophs were present in all Sphagnum mosses, even in those mosses with a low initial methane oxidation activity. Prolonged incubation of Sphagnum mosses from lawn and hummock with methane revealed that the methanotrophic community present was viable and showed an increased activity within 15 days. The high abundance of methanotrophic Methylocystis species in the most active mosses suggests that these might be responsible for the bulk of methane oxidation.

2011 ◽  
Vol 8 (5) ◽  
pp. 9357-9380 ◽  
Author(s):  
N. Kip ◽  
C. Fritz ◽  
E.S. Langelaan ◽  
Y. Pan ◽  
L. Bodrossy ◽  
...  

Abstract. Sphagnum peatlands are important ecosystems in the methane cycle. Methanotrophs living in and on the Sphagnum mosses are able to act as a methane filter and thereby reduce methane emissions. We investigated in situ methane concentrations and the corresponding activity and diversity of methanotrophs in different Sphagnum dominated bog microhabitats. In contrast to the Northern Hemisphere peat ecosystems the temperate South American peat bogs are dominated by one moss species; Sphagnum magellanicum. This permitted a species-independent comparison of the different bog microhabitats. Potential methane oxidizing activity was found in all Sphagnum mosses sampled and a positive correlation was found between activity and in situ methane concentrations. Substantial methane oxidation activity (23 μmol CH4 gDW−1 day−1) was found in pool mosses and could be correlated with higher in situ methane concentrations (>35 μmol CH4 l−1 pore water). Little methanotrophic activity (<0.5 μmol CH4 gDW−1 day−1) was observed in living Sphagnum mosses from lawns and hummocks. Methane oxidation activity was relatively high (>4 μmol CH4 gDW−1 day−1) in Sphagnum litter situated at depths around the water levels and rich in methane. The total bacterial community was studied using 16S rRNA gene sequencing and the methanotrophic communities were studied using a pmoA microarray and a complementary pmoA clone library. The methanotrophic diversity was similar in the different habitats of this study and surprisingly comparable to the methanotrophic diversity found in peat mosses from the Northern Hemisphere. The pmoA microarray data indicated that both alpha- and gammaproteobacterial methanotrophs were present in all Sphagnum mosses, even in those mosses with a low initial methane oxidation activity. Prolonged incubation of Sphagnum mosses from lawn and hummock with methane revealed that the methanotrophic community present was viable and showed an increased activity within 15 days. The high abundance of methanotrophic Methylocystis species in the most active mosses suggests that these might be responsible for the bulk of methane oxidation.


2008 ◽  
Vol 75 (1) ◽  
pp. 119-126 ◽  
Author(s):  
M. Rahalkar ◽  
J. Deutzmann ◽  
B. Schink ◽  
I. Bussmann

ABSTRACT The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.


2003 ◽  
Vol 48 (4) ◽  
pp. 45-52 ◽  
Author(s):  
A. Nozhevnikova ◽  
M. Glagolev ◽  
V. Nekrasova ◽  
J. Einola ◽  
K. Sormunen ◽  
...  

Landfills and dumps are important sources of atmospheric methane. There is no generally accepted estimate of the influence of methane oxidation on landfill methane emissions. The present work aimed to analyse different methods for the investigation of methane emission and oxidation in methane-producing environments (wetlands, landfills, sludge checks), and to develop the precise procedure for the landfills. The combination of geochemical and microbiological methods to estimate and monitor the oxidation and emission of methane in landfills during different seasons is proposed. It includes the measurements, both on the surface and at different depths (up to 1 m) of landfill ground of the following parameters: (1) concentrations of methane, carbon dioxide and oxygen; (2) quantity of 13C isotope in gas samples; (3) methane-oxidation activity of landfill grounds assayed with two different methods: (a) in conditions of no moisture or substrate limitations, and (b) in conditions with a minimal deviation to in situ conditions; (4) the density of methanotrophic microbial population.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


2021 ◽  
Vol 13 (7) ◽  
pp. 1250
Author(s):  
Yanxing Hu ◽  
Tao Che ◽  
Liyun Dai ◽  
Lin Xiao

In this study, a machine learning algorithm was introduced to fuse gridded snow depth datasets. The input variables of the machine learning method included geolocation (latitude and longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A total of 29,565 in situ observations were used to train and optimize the machine learning algorithm. A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research (GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere (NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three snow depth datasets are retrieved from passive microwave brightness temperature or assimilation with in situ observations, while the last two are snow depth datasets obtained from meteorological reanalysis data with a land surface model and data assimilation system. Then, three machine learning methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The RFR model performed best and was thus used to produce a new snow depth product from the fusion of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011. The fused snow-depth product was verified at five well-known snow observation sites. The R2 of Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other specific regions.


2021 ◽  
Author(s):  
Liling Zhang ◽  
Junfei Chen ◽  
Haolin Yang ◽  
Xiaohan Wang ◽  
Zebao Rui

Phytotaxa ◽  
2018 ◽  
Vol 336 (2) ◽  
pp. 148 ◽  
Author(s):  
CARLOS CERREJÓN ◽  
ENRIQUE MAGUILLA ◽  
DIETMAR QUANDT ◽  
JESÚS MUÑOZ ◽  
MODESTO LUCEÑO

Specimens of Andreaea sect. Andreaea collected in Lesotho show morphological differences from the remaining Sub-Saharan Africa species in the group. Particularly, Lesotho specimens have much larger spores, a character diagnostic in the genus. Spore size also separates the Lesotho specimens from typical A. rupestris from the Northern Hemisphere. Consequently, we describe a new species from the highlands of Lesotho (Andreaea barbarae). Additionally, we present a taxonomic key to all accepted species of Andreaea sect. Andreaea in sub-Saharan Africa.


Sign in / Sign up

Export Citation Format

Share Document