scholarly journals Straw application in paddy soil enhances methane production also from other carbon sources

2013 ◽  
Vol 10 (8) ◽  
pp. 14169-14193 ◽  
Author(s):  
Q. Yuan ◽  
J. Pump ◽  
R. Conrad

Abstract. Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

2014 ◽  
Vol 11 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Q. Yuan ◽  
J. Pump ◽  
R. Conrad

Abstract. Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition resulted in enhancement of SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the enhancement of ROC-derived CH4 production after RS application was probably caused by the significant increase of the abundance of methanogenic Archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.


2021 ◽  
Vol 18 (19) ◽  
pp. 5491-5511
Author(s):  
Tanya J. R. Lippmann ◽  
Michiel H. in 't Zandt ◽  
Nathalie N. L. Van der Putten ◽  
Freek S. Busschers ◽  
Marc P. Hijma ◽  
...  

Abstract. Northern latitude peatlands act as important carbon sources and sinks, but little is known about the greenhouse gas (GHG) budgets of peatlands that were submerged beneath the North Sea during the last glacial–interglacial transition. We found that whilst peat formation was diachronous, commencing between 13 680 and 8360 calibrated years before the present, stratigraphic layering and local vegetation succession were consistent across a large study area. Large carbon stores were measured. In situ methane (CH4) concentrations of sediment pore waters were widespread but low at most sites, with the exception of two locations. Incubation experiments in the laboratory revealed molecular signatures of methanogenic archaea, with strong increases in rates of activity upon methylated substrate amendment. Remarkably, methanotrophic activity and the respective diagnostic molecular signatures could not be detected. Heterotrophic Bathyarchaeota dominated the archaeal communities, and bacterial populations were dominated by candidate phylum JS1 bacteria. In the absence of active methanogenic microorganisms, we conclude that these sediment harbour low concentrations of widespread millennia-old CH4. The presence of large widespread stores of carbon and in situ methanogenic microorganisms, in the absence of methanotrophic microorganisms, holds the potential for microbial CH4 production if catalysed by a change in environmental conditions.


2016 ◽  
Vol 13 (10) ◽  
pp. 3163-3174 ◽  
Author(s):  
Katharina Lenhart ◽  
Thomas Klintzsch ◽  
Gerald Langer ◽  
Gernot Nehrke ◽  
Michael Bunge ◽  
...  

Abstract. Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g−1 d−1, or 30 ng g−1 POC h−1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.


2016 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
P. Setyanto ◽  
Rosenani A.B. ◽  
A.K. Makarim ◽  
Che Fauziah I. ◽  
A. Bidin ◽  
...  

Atmospheric methane (CH4) is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO2 on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH4 production and emission. However, data on CH4 emission from different soil types and the characteristics affecting CH4 production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH4 production of selected soils in Java, and determine the limiting factors of CH4 production. The results showed that addition of 1% glucose to the soils led to an increase in CH4 production by more than twelve fold compared to no glucose addition. The CH4 production potential ranged between 3.21 and 112.30 mg CH4 kg-1 soil. The lowest CH4 production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH4 production. Stepwise multiple regression analysis of CH4 production and soil characteristics showed that pH and the contents of Fe2O3, MnO2, SO4, and silt in the soil strongly influenced CH4 production. Results of this study can be used for further development of a model on CH4 emission from rice fields.


2016 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
P. Setyanto ◽  
Rosenani A.B. ◽  
A.K. Makarim ◽  
Che Fauziah I. ◽  
A. Bidin ◽  
...  

Atmospheric methane (CH4) is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO2 on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH4 production and emission. However, data on CH4 emission from different soil types and the characteristics affecting CH4 production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH4 production of selected soils in Java, and determine the limiting factors of CH4 production. The results showed that addition of 1% glucose to the soils led to an increase in CH4 production by more than twelve fold compared to no glucose addition. The CH4 production potential ranged between 3.21 and 112.30 mg CH4 kg-1 soil. The lowest CH4 production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH4 production. Stepwise multiple regression analysis of CH4 production and soil characteristics showed that pH and the contents of Fe2O3, MnO2, SO4, and silt in the soil strongly influenced CH4 production. Results of this study can be used for further development of a model on CH4 emission from rice fields.


2019 ◽  
Author(s):  
Ralf Conrad ◽  
Melanie Klose ◽  
Alex Enrich-Prast

Abstract. Lake sediments in Amazonia are a significant source of CH4, a potential greenhouse gas. Previous studies of sediments using 13C analysis found that the contribution of hydrogenotrophic versus aceticlastic methanogenesis to CH4 production was relatively high. Here, we determined the methanogenic pathway in the same sediments (n = 6) by applying [14C]bicarbonate or [2-14C]acetate, and confirmed the high relative contribution (50–80 %) of hydrogenotrophic methanogenesis. The respiratory index (RI) of [2-14C]acetate, which is 14CO2 relative to 14CH4 + 14CO2, divided the sediments into two categories, i.e., those with an RI  0.4 showing that a large percentage of the acetate-methyl was oxidized to CO2 rather than reduced to CH4. Hence, part of the acetate was probably converted to CO2 plus H2 via syntrophic oxidation, thus enhancing hydrogenotrophic methanogenesis. This happened despite the presence of potentially aceticlastic Methanosaetaceae in all the sediments. Alternatively, acetate may have been oxidized with a constituent of the sediment organic matter (humic acid) serving as oxidant. Indeed, apparent acetate turnover rates were larger than CH4 production rates except in those sediments with a R 


Author(s):  
Bogdan Mihai ONICA ◽  
Roxana VIDICAN ◽  
Valentina SANDOR ◽  
Traian BRAD ◽  
Mignon SANDOR

Agricultural practices, such as the use of fertilizers, can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamics related to different factors can be a powerful tool for understanding basic and applied ecological contexts. The main objective of this paper was to assess the changes of carbon turnover rate and the microbial metabolic activity, when different types of fertilizers were used, process called priming effect. A microcosm experiment was designed and performed under controlled temperature and humidity and the soil samples were analyzed using the MicroResp technique. Results show that the integration in soil of different carbon sources, such as green manure, can lead to a positive priming effect and integration of mineral fertilizers can lead to negative priming effect. The carbon sources with the highest respiratory activity were α-ketoglutaric acid, malic acid, oxalic acid, citric acid, while the lowest respiratory activity was obtained in case of arginine.


2020 ◽  
Vol 74 (1) ◽  
pp. 713-733
Author(s):  
Seigo Shima ◽  
Gangfeng Huang ◽  
Tristan Wagner ◽  
Ulrich Ermler

Most methanogenic archaea use the rudimentary hydrogenotrophic pathway—from CO2 and H2 to methane—as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1 species to the C1 carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2 to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420–based hydride transfers, and one coenzyme F430–based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2 reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.


2019 ◽  
Vol 116 (11) ◽  
pp. 5037-5044 ◽  
Author(s):  
Bojk A. Berghuis ◽  
Feiqiao Brian Yu ◽  
Frederik Schulz ◽  
Paul C. Blainey ◽  
Tanja Woyke ◽  
...  

Methanogenic archaea are major contributors to the global carbon cycle and were long thought to belong exclusively to the euryarchaeal phylum. Discovery of the methanogenesis gene cluster methyl-coenzyme M reductase (Mcr) in the Bathyarchaeota, and thereafter the Verstraetearchaeota, led to a paradigm shift, pushing back the evolutionary origin of methanogenesis to predate that of the Euryarchaeota. The methylotrophic methanogenesis found in the non-Euryarchaota distinguished itself from the predominantly hydrogenotrophic methanogens found in euryarchaeal orders as the former do not couple methanogenesis to carbon fixation through the reductive acetyl-CoA [Wood–Ljungdahl pathway (WLP)], which was interpreted as evidence for independent evolution of the two methanogenesis pathways. Here, we report the discovery of a complete and divergent hydrogenotrophic methanogenesis pathway in a thermophilic order of the Verstraetearchaeota, which we have named Candidatus Methanohydrogenales, as well as the presence of the WLP in the crenarchaeal order Desulfurococcales. Our findings support the ancient origin of hydrogenotrophic methanogenesis, suggest that methylotrophic methanogenesis might be a later adaptation of specific orders, and provide insight into how the transition from hydrogenotrophic to methylotrophic methanogenesis might have occurred.


Sign in / Sign up

Export Citation Format

Share Document