scholarly journals Carbon dioxide transport across the hillslope–riparian–stream continuum in a boreal headwater catchment

2014 ◽  
Vol 11 (11) ◽  
pp. 15585-15619 ◽  
Author(s):  
F. I. Leith ◽  
K. J. Dinsmore ◽  
M. B. Wallin ◽  
M. F. Billett ◽  
K. V. Heal ◽  
...  

Abstract. Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope–riparian–stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope–riparian–stream continuum in the Västrabäcken sub-catchment of the Krycklan Catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012–September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr-1 compared with 270 mm yr-1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr-1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m-2 yr-1. A hotspot for riparian CO2 export was observed at 30–50 cm depth (accounting for 71% of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downtream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m-2 yr-1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m-2 yr-1) gives 1.8 g CO2-C m-2 yr-1 which can be attributed to evasion losses (accounting for 60% of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit.

2015 ◽  
Vol 12 (6) ◽  
pp. 1881-1892 ◽  
Author(s):  
F. I. Leith ◽  
K. J. Dinsmore ◽  
M. B. Wallin ◽  
M. F. Billett ◽  
K. V. Heal ◽  
...  

Abstract. Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope–riparian–stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope–riparian–stream continuum in the Västrabäcken sub-catchment of the Krycklan catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012–September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr−1 compared with 270 mm yr−1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr−1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m−2 yr−1. A hotspot for riparian CO2 export was observed at 30–50 cm depth (accounting for 71 % of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downstream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m−2 yr−1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m−2 yr−1) gives 1.8 g CO2-C m−2 yr−1 which can be attributed to evasion losses (accounting for 60 % of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit.


2018 ◽  
Vol 15 (7) ◽  
pp. 2177-2188 ◽  
Author(s):  
Michael P. Schwab ◽  
Julian Klaus ◽  
Laurent Pfister ◽  
Markus Weiler

Abstract. Diel fluctuations of stream water DOC concentrations are generally explained by a complex interplay of different instream processes. We measured the light absorption spectrum of water and DOC concentrations in situ and with high frequency by means of a UV–Vis spectrometer during 18 months at the outlet of a forested headwater catchment in Luxembourg (0.45 km2). We generally observed diel DOC fluctuations with a maximum in the afternoon during days that were not affected by rainfall–runoff events. We identified an increased inflow of terrestrial DOC to the stream in the afternoon, causing the DOC maxima in the stream. The terrestrial origin of the DOC was derived from the SUVA-254 (specific UV absorbance at 254 nm) index, which is a good indicator for the aromaticity of DOC. In the studied catchment, the most likely process that can explain the diel DOC input variations towards the stream is the so-called viscosity effect. The water temperature in the upper parts of the saturated riparian zone is increasing during the day, leading to a lower viscosity and therefore a higher hydraulic conductivity. Consequently, more water from areas that are rich in terrestrial DOC passes through the saturated riparian zone and contributes to streamflow in the afternoon. We believe that not only diel instream processes, but also viscosity-driven diel fluctuations of terrestrial DOC input should be considered to explain diel DOC patterns in streams.


2016 ◽  
Vol 106 ◽  
pp. 155-162 ◽  
Author(s):  
Frederik Clauson-Kaas ◽  
Carmel Ramwell ◽  
Hans Chr. B. Hansen ◽  
Bjarne W. Strobel
Keyword(s):  

2021 ◽  
Author(s):  
Hannah Gies ◽  
Maarten Lupker ◽  
Silvan Wick ◽  
Negar Haghipour ◽  
Björn Buggle ◽  
...  

1999 ◽  
Vol 222 (1-4) ◽  
pp. 75-92 ◽  
Author(s):  
B.L McGlynn ◽  
J.J McDonnell ◽  
J.B Shanley ◽  
C Kendall

2014 ◽  
Vol 11 (11) ◽  
pp. 3043-3056 ◽  
Author(s):  
T. Lambert ◽  
A.-C. Pierson-Wickmann ◽  
G. Gruau ◽  
A. Jaffrezic ◽  
P. Petitjean ◽  
...  

Abstract. Monitoring the isotopic composition (δ13CDOC) of dissolved organic carbon (DOC) during flood events can be helpful for locating DOC sources in catchments and quantifying their relative contribution to stream DOC flux. High-resolution (< hourly basis) δ13CDOC data were obtained during six successive storm events occurring during the high-flow period in a small headwater catchment in western France. Intra-storm δ13CDOC values exhibit a marked temporal variability, with some storms showing large variations (> 2 ‰), and others yielding a very restricted range of values (< 1 ‰). Comparison of these results with previously published data shows that the range of intra-storm δ13CDOC values closely reflects the temporal and spatial variation in δ13CDOC observed in the riparian soils of this catchment during the same period. Using δ13CDOC data in conjunction with hydrometric monitoring and an end-member mixing approach (EMMA), we show that (i) > 80% of the stream DOC flux flows through the most superficial soil horizons of the riparian domain and (ii) the riparian soil DOC flux is comprised of DOC coming ultimately from both riparian and upland domains. Based on its δ13C fingerprint, we find that the upland DOC contribution decreases from ca.~30% of the stream DOC flux at the beginning of the high-flow period to < 10% later in this period. Overall, upland domains contribute significantly to stream DOC export, but act as a size-limited reservoir, whereas soils in the wetland domains act as a near-infinite reservoir. Through this study, we show that δ13CDOC provides a powerful tool for tracing DOC sources and DOC transport mechanisms in headwater catchments, having a high-resolution assessment of temporal and spatial variability.


2016 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Tadashi Tanaka

Variation of water chemistry does not merely occur due to in situ chemical process, but also transport process. The study was carried out to address the role of subsurface flow dynamic on spatial and temporal variation of water chemistry in a headwater catchment. Hydrometric and hydrochemistry measurements were done in transect with nested piezometers, tensiometers, and suction samplers at different depths across hillslope and riparian zone in a 5.2 ha first-order drainage of the Kawakami experimental basin, Nagano, Central Japan from August 2000 to August 2001. Spatial variation of solute concentration was defined by the standard deviation and coefficient of variation of the seasonal observed concentrations. Autocorrelation analysis was performed to define temporal variation of solute concentration. The results showed that spatial variation of water chemistry was mainly influenced by the variation of subsurface flow through the hillslope and riparian zone. Solute concentration in the deep riparian groundwater was almost three times higher than that in the hillslope segment. A prominent downward flow in deep riparian groundwater zone provided transport of solutes to the deeper layer. Time series analysis showed that in the deep riparian groundwater, Ca2+, Mg2+, SO42- and HCO3- concentrations underwent a random process, Na+ concentration of a random process superimposed by a trend process, and SiO2 of a random process superimposed by a periodic process. Near the riparian surface, SO42- concentration was composed of a random process superimposed by a periodic process, whereas other solutes were mainly in a random process. In the hillslope soil water, there was no trend observed for the Na+ concentration, but there were for Ca2+ and Mg2+. The magnitude and direction of subsurface flow across hillslope and riparian zone created transport and deposition processes that changed solute concentration spatially and temporally.


2021 ◽  
Author(s):  
Katharina Blaurock ◽  
Phil Garthen ◽  
Benjamin S. Gilfedder ◽  
Jan H. Fleckenstein ◽  
Stefan Peiffer ◽  
...  

&lt;p&gt;Dissolved organic carbon (DOC) constitutes the biggest portion of carbon that is exported from soils. During the last decades, widespread increases in DOC concentrations of surface waters have been observed, affecting ecosystem functioning and drinking water treatment. However, the hydrological controls on DOC mobilization are still not completely understood.&lt;/p&gt;&lt;p&gt;We sampled two different topographical positions within a headwater catchment in the Bavarian Forest National Park: at a steep hillslope (880 m.a.s.l.) and in a flat and wide riparian zone (770 m.a.s.l.). By using piezometers, pore water samplers (peepers) and in-stream spectrometric devices we measured DOC concentrations as well as DOC absorbance (A&lt;sub&gt;254&lt;/sub&gt;/A&lt;sub&gt;365&lt;/sub&gt; and SUVA&lt;sub&gt;254&lt;/sub&gt;) and fluorescence characteristics (fluorescence and freshness indices) in soil water, shallow ground water and stream water in order to gain insights into the DOC source areas during base-flow and during precipitation events.&lt;/p&gt;&lt;p&gt;High DOC concentrations (up to 80 mg L&lt;sup&gt;-1&lt;/sup&gt;) were found in soil water from cascading sequences of small ponds in the flat downstream part of the catchment that fill up temporarily. The increase of in-stream DOC concentrations during events was accompanied by changing DOC characteristics at both locations, for example increasing freshness index values. As the freshness index values were approaching the values found in the DOC-rich ponds in the riparian zone, these ponds seem to be important DOC sources during events. Our preliminary results point to a change of flow pathways during events.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document