doc flux
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Bennet Juhls ◽  
Anne Morgenstern ◽  
Pier Paul Overduin

<p>River biogeochemistry at any location integrates environmental processes over a definable upstream area of the river watershed. Therefore, biogeochemical parameters of river water are powerful indicators of the climate change impact on the entire watershed and smaller parts of it.</p><p>The current warming of the Siberian Arctic is changing atmospheric forcing, precipitation, subsurface water storage, and runoff from rivers to the Arctic Ocean. A number of studies predict an increase of organic carbon export by rivers into the Arctic Ocean with further warming of the Arctic. Major potential drivers for this increase are the rise of river discharge and permafrost thaw, which mobilizes organic matter.</p><p>Here, we present results of high frequency monitoring program of the Lena River waters in the central part of its delta at the Laptev Sea. For the first time, a number of biogeochemical parameters such as dissolved organic carbon (DOC), coloured dissolved organic matter, electrical conductivity, temperature, and d<sup>18</sup>O isotopes were measured at an interval of every few days throughout the entire season. Currently, the data set comprises two complete years from the spring 2018 until the spring 2020, which were characterized by extremely high and low summer discharges, respectively. While 2018 to 2019 was the fourth highest on record from 1936 to present, resulting in an annual DOC flux of 6.8 Tg C yr<sup>-1</sup>, 2019 was the sixth lowest discharge year with a significantly lower DOC flux of 4.5 Tg C yr<sup>-1</sup>. Endmember analysis using electrical conductivity and d<sup>18</sup>O isotopes showed that rainwater transported less DOC in 2019 (1.5 Tg C) than in 2018 (2.9 Tg C) although the winter base flow and the snow and ice meltwater transported similar amounts.</p><p>The biogeochemical response of the Lena River water provides us with new insights into the catchment processes, including permafrost thaw and potential mobilization of previously frozen organic carbon. Our new monitoring program will serve 1) as a baseline to measure future changes and 2) as a training dataset to project changes under future climate scenarios.</p>


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Fengxia Niu ◽  
Fangying Ji ◽  
Qian Zhang ◽  
Qiushi Shen

Carbon cycling in rivers is altered by the creation of impoundments through dam construction. This paper seeks to identify the source and composition of dissolved organic matter (DOM) in both water and sediment in Lake Longjing by contrasting the optical characterization of DOM. By comparing the dissolved organic carbon (DOC) concentrations, we show that the sediment (53.7 ± 16.6 mg/L) acts as a DOC source to the overlying water (23.1 ± 1.4 mg/L). The estimated DOC flux in the original reservoir region (88.3 mg m−2 d−1) is higher than that in the newly submerged region (26 mg m−2 d−1), whereas the latter has larger contribution to the DOC annual load because of its larger sediment area. Spectroscopic analysis suggested that pore waters had higher aromaticity and lower proportion of fresh DOM than those in surface waters and benthic overlying waters. Through Parallel Factor Analysis, four fluorescent components were identified, i.e., two terrestrial humic-like components, one protein-like, and one microbial humic-like. Spearman correlation and Non-Metric-Multidimensional Scaling (NMDS) analysis manifested that fluorescent DOM in surface sediments is mainly contributed by autochthonous source, the others by allochthonous source. Due to the high sensitivity of the fluorescent intensity of the protein-like component, it is a useful indicator to reveal the changes of source of DOM.


2020 ◽  
Vol 12 (20) ◽  
pp. 3380
Author(s):  
Sim ChunHock ◽  
Nagur Cherukuru ◽  
Aazani Mujahid ◽  
Patrick Martin ◽  
Nivedita Sanwlani ◽  
...  

We present a new remote sensing based method to estimate dissolved organic carbon (DOC) flux discharged from rivers into coastal waters off the Sarawak region in Borneo. This method comprises three steps. In the first step, we developed an algorithm for estimating DOC concentrations using the ratio of Landsat-8 Red to Green bands B4/B3 (DOC (μM C) = 89.86 ·e0.27·(B4/B3)), which showed good correlation (R = 0.88) and low mean relative error (+5.71%) between measured and predicted DOC. In the second step, we used TRMM Multisatellite Precipitation Analysis (TMPA) precipitation data to estimate river discharge for the river basins. In the final step, DOC flux for each river catchment was then estimated by combining Landsat-8 derived DOC concentrations and TMPA derived river discharge. The analysis of remote sensing derived DOC flux (April 2013 to December 2018) shows that Sarawak coastal waters off the Rajang river basin, received the highest DOC flux (72% of total) with an average of 168 Gg C per year in our study area, has seasonal variability. The whole of Sarawak represents about 0.1% of the global annual riverine and estuarine DOC flux. The results presented in this study demonstrate the ability to estimate DOC flux using satellite remotely sensed observations.


2020 ◽  
Author(s):  
Fred Worrall ◽  
Nicholas Howden ◽  
Timothy Burt

<p>Dissolved organic carbon (DOC) represents an important component of the terrestrial and fluvial carbon cycle as it represents a flux from terrestrial carbon stores and while it transfers through the fluvial network it can be processed to release greenhouse gases to the atmosphere. Furthermore, DOC is a major water resource limitation as the dissolved organic matter has to be removed prior to treatment. Therefore, we need to understand the concentration and fluxes of DOC and they change across a landscape between the terrestrial source and the tidal limit.</p><p>Our ability to understand the processing of terrestrial and fluvial carbon has been limited by the range of catchments that have been considered and the time scale over which they have been considered. Studies focused on similar catchment types and very little means of comparing between catchments. However, if we can access and understand large datasets we can find general principles which control DOC and the relative importance of these controls. In this study we use two datasets. The first, is a dataset sampled across the UK for major rivers (270 catchments) from 1974 and this dataset is ideal for understanding flux to the continental shelf and this dataset has over 50000 datapoints. Secondly, many of these sites are monitored for a rang e of other parameters that are related to the composition of the dissolved organic matter. The important covariates for DOM composition are BOD, which is a measure of DOM decomposition, and COD which is measure of the oxidation state of the DOM. All the study catchments could be characterised by a range of covariate information, eg. soil cover, land use, hydro-climatology. To make maximum use of this data the dataset was considered within a Bayesian hierarchical framework.</p><p>The concentrations of DOC from the UK rose for the 1974 on to the late 1990s before a decline to 2007-08. The decline was driven by changes in urban sources, particular by improvements in sewage treatment. The DOC flux from the UK has declined since a peak in 2000 and in 2017 was 767 ktonnes C/yr (95% credible interval 644 – 909 ktonnesC/yr). Modelling composition turnover gives the DOC flux from source as 3.5 Mtonnes C/yr with 2.6 Mtonnes C/yr lost to atmosphere (14 Mtonnes CO<sub>2eq</sub>/yr = 59 tonnes CO<sub>2eq</sub>/km2/yr).</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 581-595
Author(s):  
Keri L. Bowering ◽  
Kate A. Edwards ◽  
Karen Prestegaard ◽  
Xinbiao Zhu ◽  
Susan E. Ziegler

Abstract. Boreal forests are subject to a wide range of temporally and spatially variable environmental conditions driven by season, climate, and disturbances such as forest harvesting and climate change. We captured dissolved organic carbon (DOC) from surface organic (O) horizons in a boreal forest hillslope using passive pan lysimeters in order to identify controls and hot moments of DOC mobilization from this key C source. We specifically addressed (1) how DOC fluxes from O horizons vary on a weekly to seasonal basis in forest and paired harvested plots and (2) how soil temperature, soil moisture, and water input relate to DOC flux trends in these plots over time. The total annual DOC flux from O horizons contain contributions from both vertical and lateral flow and was 30 % greater in the harvested plots than in the forest plots (54 g C m−2 vs. 38 g C m−2, respectively; p=0.008). This was despite smaller aboveground C inputs and smaller soil organic carbon stocks in the harvested plots but analogous to larger annual O horizon water fluxes measured in the harvested plots. Water input, measured as rain, throughfall, and/or snowmelt depending on season and plot type, was positively correlated to variations in O horizon water fluxes and DOC fluxes within the study year. Soil temperature was positively correlated to temporal variations of DOC concentration ([DOC]) of soil water and negatively correlated with water fluxes, but no relationship existed between soil temperature and DOC fluxes at the weekly to monthly scale. The relationship between water input to soil and DOC fluxes was seasonally dependent in both plot types. In summer, a water limitation on DOC flux existed where weekly periods of no flux alternated with periods of large fluxes at high DOC concentrations. This suggests that DOC fluxes were water-limited and that increased water fluxes over this period result in proportional increases in DOC fluxes. In contrast, a flushing of DOC from O horizons (observed as decreasing DOC concentrations) occurred during increasing water input and decreasing soil temperature in autumn, prior to snowpack development. Soils of both plot types remained snow-covered all winter, which protected soils from frost and limited percolation. The largest water input and soil water fluxes occurred during spring snowmelt but did not result in the largest fluxes of DOC, suggesting a production limitation on DOC fluxes over both the wet autumn and snowmelt periods. While future increases in annual precipitation could lead to increased DOC fluxes, the magnitude of this response will be dependent on the type and intra-annual distribution of this increased precipitation.


Author(s):  
Kukuh Murtilaksono ◽  
Syaiful Anwar ◽  
Arief Hartono ◽  
Sunarti Sunarti ◽  
Yakov Kuzyakov ◽  
...  

DOC fluxes were studied within soil profiles on forest toposequences transect of Bukit Dua Belas National Park and Harapan Forest, Jambi, Indonesia. DOC concentration was determined using NPOC (Non Purgeable Organic Carbon) method.  Amount and DOC flux from soil horizons on the lower slope was significantly higher than that from the middle and the upper slopes. Amount and DOC flux from AO soil horizon was significantly higher than that from AB and B soil horizons.  DOC was maximally accumulated from AO soil horizon of soil profile on lower slope during rainy season.


2019 ◽  
Vol 23 (7) ◽  
pp. 3141-3153 ◽  
Author(s):  
Linhua Wang ◽  
Haw Yen ◽  
Xinhui E ◽  
Liding Chen ◽  
Yafeng Wang

Abstract. Dissolved organic carbon (DOC) transported by runoff has been identified as an important role in the global carbon cycle. Despite there being many studies on DOC concentration and flux, little information is available for the semi-arid catchments of the Loess Plateau region (LPR). The primary goal of this study was to quantify DOC exported and driven by a sequence of rainfall events during the concentrated rainfall season. In addition, factors that affect DOC export from a small headwater catchment will be investigated accordingly. Runoff discharge and DOC concentration were monitored at the outlet of the Yangjuangou catchment in Yanan, Shaanxi Province, China. The results showed that DOC concentration was highly variable, with event-based DOC concentrations ranging from 5.14 to 13.14 mg L−1. Hysteresis analysis showed a nonlinear relationship between DOC concentration and flow rate in the hydrological process. The monthly DOC flux loading from the catchment was varied from 94.73 to 110.17 kg km−2, while the event-based DOC flux ranged from 0.18 to 2.84 kg km−2 in the period of June to September. Variations of event-driven DOC concentration contributed slightly to a difference in DOC flux, whereas intra-events of rainfall amount and runoff discharge led to evident differences in DOC export. In conclusion, our case results highlighted the advantages of high-frequency monitoring for DOC export and indicated that event-driven DOC export is largely influenced by the interaction of catchment hydrology and antecedent condition within a catchment. Engineers and scientists can take advantage of the derived results to better develop advanced field monitoring work. In addition, more studies are needed to investigate the magnitude of terrestrial DOC export in response to projected climate change at larger spatio-temporal scales, which may have implications for the carbon balance and carbon cycle model from an ecologically restored catchment in the LPR.


2019 ◽  
Vol 11 (2) ◽  
pp. 514-530 ◽  
Author(s):  
Mingxu Li ◽  
Changhui Peng ◽  
Xiaolu Zhou ◽  
Yanzheng Yang ◽  
Yanrong Guo ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Linhua Wang ◽  
Haw Yen ◽  
Xinhui E ◽  
Liding Chen ◽  
Yafeng Wang

Abstract. Dissolved organic carbon (DOC) transported by surface runoff has been identified as an important role of the global carbon cycle. Despite there being many studies on DOC concentration and flux, but little information is available in semi-arid catchments of the Loess Plateau Region (LPR). The primary goal of this study was to quantify DOC exported from a sequence of runoff events during the concentrated rainfall season. In addition, factors that affect DOC export from a small headwater catchment will be investigated accordingly. Runoff discharge and DOC concentration were monitored at the outlet of the Yangjuangou catchment in Yanan, Shaanxi Province, China. The results showed that DOC concentration was highly variable (1.91–34.70 mg L−1), with event-based DOC concentrations ranging from 4.08 to 15.66 mg L−1. The mean monthly DOC flux loading from the catchment was 94.73–110.17 kg km−2 from June to September, while the event-based DOC flux ranged from 0.08 to 2.81 kg km−2. Intra-events of rainfall amount and runoff discharge led to event-based/monthly differences in DOC concentration and flux. Hysteresis analysis showed a nonlinear relationship between DOC concentration and discharge in the runoff process. Our results highlighted the advantages of high-frequency monitoring for DOC export and indicated that DOC export from a catchment is largely influenced by the interaction of rainfall and antecedent conditions for a rainfall event. Engineering and scientists can take advantage of the derived results to better develop advanced field monitoring work. In addition, release of DOC runoff can take quantified during hydrological and biogeochemical processes within catchments in LPR.


2019 ◽  
Author(s):  
Keri Bowering ◽  
Kate A. Edwards ◽  
Xinbiao Zhu ◽  
Susan E. Ziegler

Abstract. Boreal forests are subject to a wide range of temporally and spatially variable environmental conditions driven by seasonal and regional climate variations, in addition to disturbances such as forest harvesting and climate change. Among the various ecological mechanisms affected by disturbance, is the transport rate of dissolved organic carbon (DOC) from surface soil organic (O) horizons to deeper mineral SOC pools and the adjacent aquatic systems. Here, we examine the transport of DOC from surface O horizons across a boreal forest landscape using passive pan lysimeters in order to identify controls and hot moments of DOC mobilization from this key C source. To do so, we specifically addressed (1) how DOC fluxes from O horizons vary on a weekly to seasonal basis in both forest and harvested plots, and (2) how soil temperature, soil moisture and water inputs relate to DOC fluxes in these plots over time. The total annual DOC flux from O horizons was greater in the warmer harvested plots than in the forest plots (54 g C m−2 vs 38 g C m−2 respectively; p = 0.008), despite smaller aboveground C inputs and smaller SOC stocks in the harvested plots. Water input, measured as rain, throughfall and/or snowmelt depending on season, was positively correlated to temporal variations in soil water and DOC fluxes. Soil temperature was positively correlated to temporal variations of DOC concentration ([DOC]) of soil water and negatively correlated with water fluxes, but no relationship existed between soil temperature and DOC fluxes. Soil moisture was negatively correlated to temporal variations in [DOC] in the harvested plots only. The relationship between water input to soil and DOC fluxes was seasonally dependent in both plot types. In summer, a water limitation on DOC flux existed where weekly periods of no flux alternated with periods of large fluxes, suggesting that increased water fluxes over this period would result in proportional increases in DOC fluxes. In contrast, a flushing of O horizons occurred during increasing water inputs and decreasing soil temperatures in autumn, prior to snowpack development. Soils of both plot types remained snow-covered all winter, which protected soils from frost and limited winter soil water fluxes. The largest water input and soil water fluxes occurred during spring snowmelt, but did not result in the largest fluxes of DOC, suggesting a production limitation on DOC fluxes over both the wet autumn and snowmelt periods. While future increases in annual precipitation could lead to increased DOC fluxes, the response may be dependent on the intra-annual distribution of this increase. Increased water input during the already wet autumn, for instance, may not lead to increased fluxes if the DOC pool is not replenished. Potential reductions in snow cover, however, leading to a reduction in soil insulation and increased occurrence of soil frost in addition to increases in winter-time water fluxes, could be an important mechanism of increased DOC production and fluxes from O horizons in winter.


Sign in / Sign up

Export Citation Format

Share Document