scholarly journals Export fluxes in a naturally fertilized area of the Southern Ocean, the Kerguelen Plateau: seasonal dynamic reveals long lags and strong attenuation of particulate organic carbon flux (Part 1)

2014 ◽  
Vol 11 (12) ◽  
pp. 17043-17087 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth current speeds were low (∼10 cm s−1) and primarily tidal-driven (M2 tidal component) providing favorable hydrodynamic conditions for the collection of flux. Particulate organic carbon (POC) flux was generally low (<0.5 mmol m−2 d−1) although two episodic export events (<14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1 month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was relatively low considering the shallow deployment depth, but similar to deep-ocean (>2 km) fluxes measured from similarly productive iron-fertilized blooms. Comparison of the sediment trap data with complementary estimates of biomass accumulation and export indicate that ∼90% of the flux was lost between 200 and 300 m. We hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for rapid flux attenuation and the High Biomass Low Export regime characterizing the Kerguelen bloom. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.

2015 ◽  
Vol 12 (11) ◽  
pp. 3153-3170 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s−1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m−2 d−1), although two episodic export events (< 14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.


2015 ◽  
Vol 112 (4) ◽  
pp. 1089-1094 ◽  
Author(s):  
Chris M. Marsay ◽  
Richard J. Sanders ◽  
Stephanie A. Henson ◽  
Katsiaryna Pabortsava ◽  
Eric P. Achterberg ◽  
...  

The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.


2013 ◽  
Vol 10 (9) ◽  
pp. 14715-14767 ◽  
Author(s):  
I. D. Lima ◽  
P. J. Lam ◽  
S. C. Doney

Abstract. The sinking of particulate organic carbon (POC) is a key component of the ocean carbon cycle and plays an important role in the global climate system. However, the processes controlling the fraction of primary production that is exported from the euphotic zone (export ratio) and how much of it survives respiration in the mesopelagic to be sequestered in the deep ocean (transfer efficiency) are not well understood. In this study, we use a three-dimensional, coupled physical-biogeochemical model (CCSM-BEC) to investigate the processes controlling the export of particulate organic matter from the euphotic zone and its flux to depth. We also compare model results with sediment trap data and other parameterizations of POC flux to depth to evaluate model skill and gain further insight into the causes of error and uncertainty in POC flux estimates. In the model, export ratios are mainly a function of diatom relative abundance and temperature while absolute fluxes and transfer efficiency are driven by mineral ballast composition of sinking material. The temperature dependence of the POC remineralization length scale is modulated by denitrification under low O2 concentrations and lithogenic (dust) fluxes. Lithogenic material is an important control of transfer efficiency in the model, but its effect is restricted to regions of strong atmospheric dust deposition. In the remaining regions, CaCO3 content of exported material is the main factor affecting transfer efficiency. The fact that mineral ballast composition is inextricably linked to plankton community structure results in correlations between export ratios and ballast minerals fluxes (opal and CaCO3), and transfer efficiency and diatom relative abundance that do not necessarily reflect ballast or direct ecosystem effects, respectively. This suggests that it might be difficult to differentiate between ecosystem and ballast effects in observations. The model's skill at reproducing sediment trap observations is equal to or better than that of other parameterizations. However, the sparseness and relatively large uncertainties of sediment trap data makes it difficult to accurately evaluate the skill of the model and other parameterizations. More POC flux observations, over a wider range of ecological regimes, are necessary to thoroughly evaluate and test model results and better understand the processes controlling POC flux to depth in the ocean.


2014 ◽  
Vol 11 (12) ◽  
pp. 17089-17150 ◽  
Author(s):  
M. Rembauville ◽  
S. Blain ◽  
L. Armand ◽  
B. Quéguiner ◽  
I. Salter

Abstract. The chemical (particulate organic carbon and nitrogen, biogenic silica) and biological (diatoms and faecal pellets) composition of the material exported to a moored sediment trap located under the winter mixed layer of the naturally-fertilized Kerguelen Plateau in the Southern Ocean was studied over an annual cycle. Despite iron availability in spring, the annual particulate organic carbon (POC) export (98.2 mmol m−2) at 289 m was low but annual biogenic silica export was significant (114 mmol m−2). This feature was related to the abundance of empty diatom frustules and the ratio of full : empty cell exerted a first order control in BSi : POC export stoichiometry of biological pump. Chaetoceros Hyalochaete spp. and Thalassiosira antarctica resting spores were found to be responsible for more than 60% of the annual POC that occurred during two very short export events (<14 days in spring-summer) representing the majority of captured export. Low diatom fluxes were observed over the remainder of the year. Faecal pellet contribution to annual carbon flux was low (34%) and reached it's seasonal maximum in autumn and winter (>80%). The seasonal progression of faecal pellet types revealed a clear transition from small spherical shapes (small copepods) in spring, larger cylindrical and ellipsoid shapes in summer (euphausiids and large copepods) and finally large tabular shapes (salps) in autumn and winter. We propose that in this High Biomass, Low Export (HBLE) environment, small, highly silicified, fast-sinking resting spores are able to bypass the high grazing pressure and efficient carbon transfer to higher trophic levels that are responsible for the low fluxes observed the during the remainder of the year. Our study also provides a statistical framework linking the ecological succession of diatom and zooplankton communities to the seasonality of carbon and silicon export within an iron-fertilized bloom region in the Southern Ocean.


2014 ◽  
Vol 11 (4) ◽  
pp. 1177-1198 ◽  
Author(s):  
I. D. Lima ◽  
P. J. Lam ◽  
S. C. Doney

Abstract. The sinking of particulate organic carbon (POC) is a key component of the ocean carbon cycle and plays an important role in the global climate system. However, the processes controlling the fraction of primary production that is exported from the euphotic zone (export ratio) and how much of it survives respiration in the mesopelagic to be sequestered in the deep ocean (transfer efficiency) are not well understood. In this study, we use a three-dimensional, coupled physical–biogeochemical model (CCSM–BEC; Community Climate System Model–ocean Biogeochemical Elemental Cycle) to investigate the processes controlling the export of particulate organic matter from the euphotic zone and its flux to depth. We also compare model results with sediment trap data and other parameterizations of POC flux to depth to evaluate model skill and gain further insight into the causes of error and uncertainty in POC flux estimates. In the model, export ratios are mainly a function of diatom relative abundance and temperature while absolute fluxes and transfer efficiency are driven by mineral ballast composition of sinking material. The temperature dependence of the POC remineralization length scale is modulated by denitrification under low O2 concentrations and lithogenic (dust) fluxes. Lithogenic material is an important control of transfer efficiency in the model, but its effect is restricted to regions of strong atmospheric dust deposition. In the remaining regions, CaCO3 content of exported material is the main factor affecting transfer efficiency. The fact that mineral ballast composition is inextricably linked to plankton community structure results in correlations between export ratios and ballast minerals fluxes (opal and CaCO3), and transfer efficiency and diatom relative abundance that do not necessarily reflect ballast or direct ecosystem effects, respectively. This suggests that it might be difficult to differentiate between ecosystem and ballast effects in observations. The model's skill in reproducing sediment trap observations is equal to or better than that of other parameterizations. However, the sparseness and relatively large uncertainties of sediment trap data makes it difficult to accurately evaluate the skill of the model and other parameterizations. More POC flux observations, over a wider range of ecological regimes, are necessary to thoroughly evaluate and test model results and better understand the processes controlling POC flux to depth in the ocean.


2009 ◽  
Vol 6 (1) ◽  
pp. 85-102 ◽  
Author(s):  
G. Fischer ◽  
G. Karakaş

Abstract. The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.


2015 ◽  
Vol 42 (3) ◽  
pp. 821-830 ◽  
Author(s):  
E. L. Cavan ◽  
F. A. C. Le Moigne ◽  
A. J. Poulton ◽  
G. A. Tarling ◽  
P. Ward ◽  
...  

Polar Biology ◽  
1996 ◽  
Vol 16 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ning Xiuren ◽  
Liu Zilin ◽  
Zhu Genhai ◽  
Shi Junxian

2013 ◽  
Vol 10 (9) ◽  
pp. 14861-14885 ◽  
Author(s):  
K. Schmidt ◽  
C. L. De La Rocha ◽  
M. Gallinari ◽  
G. Cortese

Abstract. Correlation between particulate organic carbon (POC) and calcium carbonate sinking through the deep ocean has led to the idea that ballast provided by calcium carbonate is important for the export of POC from the surface ocean. While this idea is certainly to some extent true, it is worth considering in more nuance, for example, examining the different effects on the aggregation and sinking of POC of small, non-sinking calcite particles like coccoliths and large, rapidly sinking calcite like planktonic foraminiferan tests. We have done that here in a simple experiment carried out in roller tanks that allow particles to sink continuously without being impeded by container walls. Coccoliths were efficiently incorporated into aggregates that formed during the experiment, increasing their sinking speed compared to similarly sized aggregates lacking added calcite ballast. The foraminiferan tests, which sank as fast as 700 m d−1, became associated with only very minor amounts of POC. In addition, when they collided with other, larger, foraminferan-less aggregates, they fragmented them into two smaller, more slowly sinking aggregates. While these effects were certainly exaggerated within the confines of the roller tanks, they clearly demonstrate that calcium carbonate ballast is not just calcium carbonate ballast- different forms of calcium carbonate ballast have notably different effects on POC aggregation, sinking, and export.


Sign in / Sign up

Export Citation Format

Share Document