poc flux
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Léo Lacour ◽  
Joan Llort ◽  
Nathan Briggs ◽  
Peter Strutton ◽  
Philip Boyd

Abstract At high latitudes, the export of organic matter from the surface to the ocean interior, the biological carbon pump, has conventionally been attributed to the gravitational sinking of particulate organic carbon (POC). Conspicuous deficits in ocean carbon budgets have recently challenged this long-lived paradigm of a sole pathway. Multiple strands of evidence have demonstrated the importance of additional export pathways, including the particle injection pumps (PIPs). Recent model estimates revealed that PIPs have a comparable downward POC flux to the biological gravitational pump (BGP), but with potentially different seasonal signatures. To date, logistical constraints have prevented concomitant and extensive observations of these pumps, and little is known about the seasonality of their fluxes. Here, using year-round robotic observations and recent advances in optical signal analysis, we concurrently investigated the functioning of two PIPs - the mixed layer and eddy subduction pumps - and the BGP in Southern Ocean waters. By comparing three phytoplankton bloom cycles in contrasting environments, we show how physical forcing and phytoplankton phenology influence the magnitude and seasonality of these pumps, with implications for carbon sequestration efficiency.


2021 ◽  
Author(s):  
Elena Ceballos-Romero ◽  
Ken O. Buesseler ◽  
María Villa-Alfageme

Abstract. We present here a global oceanic compilation of 234Th measurements that collects results from researchers and laboratories over a period exceeding 50 years. The origin of the 234Th sampling in the ocean goes back to 1967, when Bhat et al. (1969) initially studied 234Th distribution relative to its parent 238U in the Indian Ocean. However, it was the seminal work of Buesseler et al. (1992) – in which it was proposed that particulate organic carbon (POC) flux could be calculated from 234Th distributions if the ratio of POC to 234Th measured on sinking particles (POC : 234Th) at the desired depth was known – that drove the extensive use of the 234Th-238U radioactive pair to evaluate the efficiency with which photosynthetically fixed carbon is exported from surface ocean by means of the biological pump. Since then, a large number of 234Th depth profiles have been collected using a variety of sampling instruments and strategies that have changed the past 50 years. The present compilation is made of a total 223 datasets: 214 from studies published either in articles in referred journals, PhD thesis or repositories, and 9 unpublished datasets. The data were compiled from over 5000 locations spanning all the oceans for total 234Th profiles, dissolved and particulate 234Th concentrations, and POC : 234Th ratios (both sediment traps and filtration methods that include two sizes classes; 1–53 µm and < 53 µm). A total of 379 oceanographic expeditions and more than 56000 234Th and 18000 238U data points have been gathered in a single open-access, long-term and dynamic repository. This paper introduces the dataset along with informative and descriptive graphics. Appropriate metadata have been included, including geographic location, date, and sample depth, among others. When available, we also include water temperature, salinity, 238U data and particulate organic nitrogen data. Data sources and methods information (including 238U and 234Th) are also detailed along with valuable information for future data analysis such as bloom stage and steady/non-steady state conditions at the sampling moment. The data are archived on PANGAEA repository, with the dataset’s DOI doi.pangaea.de/10.1594/PANGAEA.918125 (Ceballos-Romero et al., 2021). This provides a valuable resource to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chun Hoe Chow ◽  
Yung-Yen Shih ◽  
Ya-Tang Chien ◽  
Jing Yi Chen ◽  
Ning Fan ◽  
...  

Cyclonic and anticyclonic eddies are usually characterized by upwelling and downwelling, respectively, which are induced by eddy pumping near their core. Using a repeated expendable bathythermograph transect (XBT) and Argo floats, and by cruise experiments, we determined that not all eddies in the northern South China Sea (NSCS) were accompanied by eddy pumping. The weakening of background thermocline was attributed to the strengthening of eddy pumping, affected by (1) wind-induced meridional Sverdrup transports and (2) Kuroshio intrusion into the NSCS. Higher particulate organic carbon (POC) fluxes (&gt; 100 mg-C m−2 day−1) were found near the eddy cores with significant eddy pumping (defined by a depth change of 22°C isotherm near the thermocline for over 10 m), although the satellite-estimated POC fluxes were inconsistent with the in-situ POC fluxes. nitrogen limitation transition and high POC flux were even found near the core of a smaller mesoscale (diameter &lt; 100 km) cyclonic eddy in May 2014, during the weakening of the background thermocline in the NSCS. This finding provides evidence that small mesoscale eddies can efficiently provide nutrients to the subsurface, and that they can remove carbon from the euphotic zone. This is important for global warming, which generally strengthens upper ocean stratification.


2021 ◽  
Vol 17 (7) ◽  
pp. 20200666
Author(s):  
Hideyuki Doi ◽  
Moriaki Yasuhara ◽  
Masayuki Ushio

The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep‐sea species richness in the contexts of the species‐energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 10 3 –10 4 -year time scales. The temperature–richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.


2021 ◽  
Author(s):  
Colleen A. Durkin ◽  
Ken O. Buesseler ◽  
Ivona Cetinić ◽  
Margaret L. Estapa ◽  
Roger P. Kelly ◽  
...  

AbstractTo better quantify the ocean’s biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean’s interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from 4 distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over 1 month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.


GCdataPR ◽  
2021 ◽  
Author(s):  
Futai XIE ◽  
Xiang ZHOU ◽  
Zui TAO ◽  
Tingting LV ◽  
Jin WANG ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Perrin Davidson ◽  
Jennifer Kenyon ◽  
David Nicholson ◽  
Ken Buesseler
Keyword(s):  
Poc Flux ◽  

2020 ◽  
Vol 8 ◽  
Author(s):  
Yung‐Yen Shih ◽  
Chin‐Chang Hung ◽  
Sing‐how Tuo ◽  
Huan‐Jie Shao ◽  
Chun Hoe Chow ◽  
...  

We have investigated the effect of eddies (cold and warm eddies, CEs and WEs) on the nutrient supply to the euphotic zone and the organic carbon export from the euphotic zone to deeper parts of the water column in the northern South China Sea. Besides basic hydrographic and biogeochemical parameters, the flux of particulate organic carbon (POC), a critical index of the strength of the oceanic biological pump, was also measured at several locations within two CEs and one WE using floating sediment traps deployed below the euphotic zone. The POC flux associated with the CEs (85 ± 55 mg-C m−2 d−1) was significantly higher than that associated with the WE (20 ± 7 mg-C m−2 d−1). This was related to differences in the density structure of the water column between the two types of eddies. Within the core of the WE, downwelling created intense stratification which hindered the upward mixing of nutrients and favored the growth of small phytoplankton species. Near the periphery of the WE, nutrient replenishment from below did take place, but only to a limited extent. By far the strongest upwelling was associated with the CEs, bringing nutrients into the lower portion (∼50 m) of the euphotic zone and fueling the growth of larger-cell phytoplankton such as centric diatoms (e.g., Chaetoceros, Coscinodiscus) and dinoflagellates (e.g., Ceratium). A significant finding that emerged from all the results was the positive relationship between the phytoplankton carbon content in the subsurface layer (where the chlorophyll a maximum occurs) and the POC flux to the deep sea.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Manno ◽  
S. Fielding ◽  
G. Stowasser ◽  
E. J. Murphy ◽  
S. E. Thorpe ◽  
...  

AbstractAntarctic krill play an important role in biogeochemical cycles and can potentially generate high-particulate organic carbon (POC) fluxes to the deep ocean. They also have an unusual trait of moulting continuously throughout their life-cycle. We determine the krill seasonal contribution to POC flux in terms of faecal pellets (FP), exuviae and carcasses from sediment trap samples collected in the Southern Ocean. We found that krill moulting generated an exuviae flux of similar order to that of FP, together accounting for 87% of an annual POC flux (22.8 g m−2 y−1). Using an inverse modelling approach, we determined the krill population size necessary to generate this flux peaked at 261 g m−2. This study shows the important role of krill exuviae as a vector for POC flux. Since krill moulting cycle depends on temperature, our results highlight the sensitivity of POC flux to rapid regional environmental change.


2020 ◽  
Vol 642 ◽  
pp. 67-81
Author(s):  
M Sampei ◽  
A Forest ◽  
L Fortier ◽  
T Yamamoto ◽  
H Hattori ◽  
...  

Dead zooplankton, including crustaceans, are increasingly recognized as important agents of vertical carbon export from surface waters and in marine food webs. Quantifying the contribution of passively sinking copepods (PSCs) to vertical fluxes of total particulate organic carbon (POC) is important for understanding marine ecosystem carbon budgets. Information on this is limited because identifying PSCs in sediment trap samples is difficult. Generally, swimmers (undecomposed metazoans, including PSCs, caught in sediment traps) are removed from a trap sample before the POC content is measured, although ignoring PSCs causes the total POC flux to be significantly underestimated. We quantified temporal and regional variability in PSC flux and contribution of PSCs to total POC flux (PSCs + detrital sinking particles, generally analyzed to estimate detrital POC flux) at the Mackenzie Shelf margins in the Beaufort Sea. Six datasets were used to examine PSC flux variability at ~100 m depth, which is deeper than the winter pycnocline depth (30-50 m), at the continental margin. The average (±SD) annual PSC flux (1378 ± 662 mg C m-2 yr-1, n = 6 [datasets]) and PSC contribution to the total POC flux (21 ± 10%, n = 6) suggested that PSCs, especially Pareuchaeta glacialis, were important agents of POC export from the surface layer (~100 m) to deeper water at the inter-regional and multiyear scales. We propose a hypothesis that processes controlling PSC flux variability may vary seasonally, perhaps relating to life cycle (reproduction) in winter (February) and osmotic stress in July-October when the PSC flux is relatively high.


Sign in / Sign up

Export Citation Format

Share Document