scholarly journals Influences of initial plankton biomass and mixed layer depths on the outcome of iron-fertilization experiments

2007 ◽  
Vol 4 (6) ◽  
pp. 4411-4441 ◽  
Author(s):  
M. Fujii ◽  
F. Chai

Abstract. Several in situ iron-enrichment experiments have been conducted, where the response of the phytoplankton community differed. We use a marine ecosystem model to investigate the effect of iron on phytoplankton in response to different initial plankton conditions and mixed layer depths. Sensitivity analysis of the model results to the mixed layer depths reveals that the modeled response to the same iron enhancement treatment differed dramatically according to the different mixed layer depth. The magnitude of the iron-induced biogeochemical responses in the surface water, such as maximum chlorophyll, is inversely correlated with the mixed layer depth, as observed. The significant decrease in maximum surface chlorophyll with mixed layer depth results from the difference in diatom concentration in the mixed layer, which is determined by vertical mixing. Sensitivity of the model to initial mesozooplankton (as grazers on diatoms) biomass shows that column-integrated net community production and export production are strongly controlled by the initial mesozooplankton biomass. Higher initial mesozooplankton biomass yields high grazing pressure on diatoms, which results in less accumulation of diatom biomass. The initial diatom biomass is also important to the outcome of iron enrichment but is not as crucial as the mixed layer depth and the initial mesozooplankton biomass. This modeling study suggests not only mixed layer depth but also the initial biomass of diatoms and its principle grazers are crucial factors in the response of the phytoplankton community to the iron enrichments, and should be considered in designing future iron-enrichment experiments.

2015 ◽  
Vol 72 (6) ◽  
pp. 1916-1925 ◽  
Author(s):  
Marina Lévy

Abstract The critical depth hypothesis (CDH) is a predictive criteria for the onset of phytoplankton blooms that comes from the steady-state analytical solution of a simple mathematical model for phytoplankton growth presented by Sverdrup in 1953. Sverdrup's phytoplankton-only model is very elementary compared with state-of-the-art ecosystem models whose numerical solution in a time-varying environment do not systematically conform to the CDH. To highlight which model ingredients make the bloom onset deviate from the CDH, the complexity of Sverdrup's model is incrementally increased, and the impact that each new level of complexity introduced is analysed. Complexity is added both to the ecosystem model and to the parameterization of physical forcing. In the most complete experiment, the model is a one-dimensional Nutrient-Phytoplankton-Zooplankton model that includes seasonally varying mixed layer depth and surface irradiance, light and nutrient limitation, variable grazing, self-shading, export, and remineralization. When complexity is added to the ecosystem model, it is found that the model solution only marginally deviates from the CDH. But when the physical forcing is also changed, the model solution can conform to two competing theories for the onset of phytoplankton blooms—the critical turbulence hypothesis and the disturbance recovery hypothesis. The key roles of three physical ingredients on the bloom onset are highlighted: the intensity of vertical mixing at the end of winter, the seasonal evolution of the mixed-layer depth from the previous summer, and the seasonal evolution of surface irradiance.


2020 ◽  
Vol 77 (4) ◽  
pp. 1556-1572
Author(s):  
Žarko Kovač ◽  
Trevor Platt ◽  
Shubha Sathyendranath

Abstract We seek to understand, in mathematical terms, the causes of stability in marine phytoplankton biomass. The stability of a simple, mixed-layer-phytoplankton-nutrient model is analysed. Primary production is modelled as a non-linear function of nutrient concentration and light. The steady state of the model system is demonstrated to be stable with a linear relation between steady state biomass and nutrients. The causes of stability are shown to be shading and nutrient limitation. When only light limitation and shading are taken into account, the steady state is a sink node. However, when nutrient limitation is taken into account, without shading, the steady state can be either a sink node or a spiral sink. The transition from a sink node to a spiral sink occurs when normalized mixed layer production becomes larger than the equivalent influx rate of nutrients into the mixed layer, demonstrating that nutrient limitation of production is a necessary, but not a sufficient condition for oscillatory solutions. In both cases, the characteristic return times are derived explicitly. The effect of shading is found to cause the depression of the steady state towards lower biomass than would otherwise be attainable. The influence of mixed-layer depth variation on stability is also analysed.


2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document