scholarly journals Measuring and modelling continuous quality distributions of soil organic matter

2009 ◽  
Vol 6 (5) ◽  
pp. 9045-9082 ◽  
Author(s):  
S. Bruun ◽  
G. I. Ågren ◽  
B. T. Christensen ◽  
L. S. Jensen

Abstract. An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution is approaching the underlying continuum. Continuous distributions leads to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help spawning the interest needed to accommodate this.

2010 ◽  
Vol 7 (1) ◽  
pp. 27-41 ◽  
Author(s):  
S. Bruun ◽  
G. I. Ågren ◽  
B. T. Christensen ◽  
L. S. Jensen

Abstract. An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution approaches the underlying continuum. Continuous distributions lead to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods will have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help generate the interest needed to accommodate this.


2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


1986 ◽  
Vol 66 (1) ◽  
pp. 1-19 ◽  
Author(s):  
W. B. McGILL ◽  
K. R. CANNON ◽  
J. A. ROBERTSON ◽  
F. D. COOK

Amounts and turnover rates of biomass and water-soluble organic C (WSOC) were measured at the Breton plots where records of long-term management of a Gray Luvisolic soil are available. Plots (control, manure, and NPKS) which had been cropped to either a wheat-fallow or a wheat-oats-barley-forage-forage rotation for 50 yr were sampled 13 times during 1981 and 1982. Biomass C and flush of microbial N were measured using the chloroform fumigation technique. Long-term crop yields were used to derive C supply to the plots. Regression analyses were used to relate seasonal fluctuations in environmental conditions to biomass and WSOC dynamics. Reinoculation with soil was unnecessary but Lysobacter sp. formed a greater proportion of isolates following incubation of fumigated soil than of unfumigated samples. Reinoculation with Lysobacter sp. is suggested to provide a more standardized biological assay. The 5-yr rotation contained 38% more N but 117% more microbial N than did the 2-yr rotation, and manured treatments contained twice as much microbial N as did NPKS or control plots. A management effect on soil organic matter quality is indicated. Averge turnover rates of biomass were 0.2–3.9 yr−1; being 1.5–2 times faster in the 2-yr rotation than in the 5-yr rotation. Replenishment of the WSOC component would have to occur 26–39 times yr−1 to supply microbial turnover. Most of the biomass must be dormant because annual C inputs are two orders of magnitude less than maintenance energy requirements. Seasonal variations in biomass were most consistently related to losses during desiccation and regrowth upon moistening. Regrowth appears to be at the expense of native soil organic matter. Management practices and environmental conditions therefore affect amount of organic matter by controlling both input of C and biomass turnover. Key words: Crop rotations, Luvisol, organic matter, biomass, soluble C, Breton plots


2008 ◽  
Vol 5 (3) ◽  
pp. 749-759 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify formulations that are more or less suitable to represent the most important drivers of long term carbon storage.


2021 ◽  
Author(s):  
Emily B. Graham ◽  
Kirsten S. Hofmockel

AbstractCoupled biogeochemical cycles drive ecosystem ecology by influencing individual-to-community scale behaviors; yet the development of process-based models that accurately capture these dynamics remains elusive. Soil organic matter (SOM) decomposition in particular is influenced by resource stoichiometry that dictates microbial nutrient acquisition (‘ecological stoichiometry’). Despite its basis in biogeochemical modeling, ecological stoichiometry is only implicitly considered in high-resolution microbial investigations and the metabolic models they inform. State-of-science SOM decomposition models in both fields have advanced largely separately, but they agree on a need to move beyond seminal pool-based models. This presents an opportunity and a challenge to maximize the strengths of various models across different scales and environmental contexts. To address this challenge, we contend that ecological stoichiometry provides a framework for merging biogeochemical and microbiological models, as both explicitly consider substrate chemistries that are the basis of ecological stoichiometry as applied to SOM decomposition. We highlight two gaps that limit our understanding of SOM decomposition: (1) understanding how individual microorganisms alter metabolic strategies in response to substrate stoichiometry and (2) translating this knowledge to the scale of biogeochemical models. We suggest iterative information exchange to refine the objectives of high-resolution investigations and to specify limited dynamics for representation in large-scale models, resulting in a new class of omics-enabled biogeochemical models. Assimilating theoretical and modelling frameworks from different scientific domains is the next frontier in SOM decomposition modelling; advancing technologies in the context of stoichiometric theory provides a consistent framework for interpreting molecular data, and further distilling this information into tractable SOM decomposition models.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


2014 ◽  
Vol 7 (1) ◽  
pp. 815-870 ◽  
Author(s):  
W. J. Riley ◽  
F. M. Maggi ◽  
M. Kleber ◽  
M. S. Torn ◽  
J. Y. Tang ◽  
...  

Abstract. Accurate representation of soil organic matter (SOM) dynamics in Earth System Models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed a SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic carbon (DOC) stocks in grassland ecosystems as well as lignin content and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and δ14C vertical profiles are consistent with a representation of SOM dynamics consisting of (1) carbon compounds without designated intrinsic turnover times, (2) vertical aqueous transport, and (3) dynamic protection on mineral surfaces.


2016 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Vladimír Šimanský ◽  
Nora Polláková

Abstract Since understanding soil organic matter (SOM) content and quality is very important, in the present study we evaluated parameters of SOM including: carbon lability (LC), lability index (LI), carbon pool index (CPI) and carbon management index (CMI) in the soil as well as in the water-stable aggregates (WSA) under different soil management practices in a commercial vineyard (established on Rendzic Leptosol in the Nitra viticulture area, Slovakia). Soil samples were taken in spring during the years 2008–2015 from the following treatments: G (grass, control), T (tillage and intensive cultivation), T+FYM (tillage + farmyard manure), G+NPK3 (grass + 3rd intensity of fertilisation for vineyards), and G+NPK1 (grass + 1st intensity of fertilisation for vineyards). The highest LI values in soil were found for the G+NPK3 and T+FYM fertilised treatments and the lowest for the unfertilised intensively tilled treatments. The CPI in the soil increased as follows: T < G+NPK3 < T+FYM < G+NPK1. The highest accumulation of carbon as well as decomposable organic matter occurred in G+NPK1 compared to other fertilised treatments, while intensive tillage caused a decrease. On average, the values of LI in WSA increased in the sequence G+NPK1 < T+FYM < G+NPK3 < T. Our results showed that the greatest SOM vulnerability to degradation was observed in the WSA under T treatment, and the greatest values of CPI in WSA were detected as a result of fertiliser application in 3rd intensity for vineyards and farmyard manure application.


Soil Research ◽  
2003 ◽  
Vol 41 (1) ◽  
pp. 95 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser

In New Zealand, cereal straw has traditionally been burned to facilitate seedbed preparation for the succeeding crop. Because of concerns over the decline of organic matter and the associated deterioration in soil structure, farmers are interested in incorporating crop residues as a means of maintaining organic matter levels. In a 6-year trial on a Wakanui silt loam on the Canterbury Plains, we evaluated the effects of 3 straw management practices (i.e. straw incorporation, burning of straw, and straw removal) on total and labile soil organic matter. A fourth treatment was included to evaluate the local practice of including seed crops (grass and clover) in cereal rotations. The seed crops were grown every second year, the crop sequence being cereal–ryegrass–cereal–clover–cereal–clover. The rate of straw (wheat) decomposition was determined using a litter bag technique, with the bags being buried at a depth of 15 cm for intervals of up to 19 months. In the straw-incorporated treatment, about 25 t/ha of straw (~11 t C/ha) was returned to the soil during the trial. However, there was no significant effect (P > 0.05) of straw management treatments on total soil C (or N), or on labile organic matter pools, although there was a tendency for higher levels of mineralisable C and N where straw was incorporated. Measured straw decomposition rates were consistent with predictions of the Douglas-Rickman residue decomposition model. Under the relatively warm conditions of the Canterbury Plains (thermal time typically >4000 degree-days per year, calculated as the sum of daily degree-days above a base temperature of 0�C), about three-quarters of incorporated straw decomposed within a year. Of the 11 t C/ha of straw-C incorporated, we estimated that only about 1 t C/ha would remain in the soil at the time of sampling. An increase in soil C by this amount would not be detectable (total soil C was about 55 t/ha in the upper 15 cm). Growing seed crops every second year increased several of the labile organic pools (mineralisable C and N, light fraction C and N, microbial biomass) in the 0–7.5 and 7.5 cm soil layers and this may have beneficial effects (e.g. improved N supply) on the succeeding cereal crop. However, the seed crops did not significantly increase total soil organic matter within the 6 years.


Sign in / Sign up

Export Citation Format

Share Document