scholarly journals The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate

2010 ◽  
Vol 7 (3) ◽  
pp. 4689-4714 ◽  
Author(s):  
J. M. Reed ◽  
A. Cvetkoska ◽  
Z. Levkov ◽  
H. Vogel ◽  
B. Wagner

Abstract. Lake Ohrid is a site of global importance for palaeoclimate research. This study presents results of diatom analysis of a ca. 136 ka sequence, Co1202, from the northeast of the lake basin. It offers the opportunity to test diatom response across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrating the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial-interglacial shifts between the dominant planktonic taxa, Cyclotella fottii and C. ocellata, and exact correlation with geochemical proxies to mark the start of the Last Interglacial at ca. 130 ka. Importantly, diatoms show much stronger evidence in this site for warming during MIS3 than recorded in other productivity-related proxies, peaking at ca. 39 ka, prior to the extreme conditions of the Last Glacial maximum. In the light of the observed patterns, and from the results of analysis of early Holocene sediments from a second core, Lz1120, the lack of a response to Late Glacial and early Holocene warming from ca. 15–7.4 ka suggests the Co1202 sequence may be compromised during this phase. After ca. 7.4 ka, there is evidence for enhanced nutrient enrichment compared to the Last Interglacial, following by a post-Medieval cooling trend. Taxonomically, morphological variability in C. fottii shows no clear trends linked to climate, but an intriguing change in central area morphology occurs after ca. 48.7 ka, coincident with a tephra layer. In contrast, C. ocellata shows morphological variation in the number of ocelli between interglacials, suggesting climatically-forced variation or evolutionary selection pressure. The application of a simple dissolution index does not track preservation quality very effectively, underlining the importance of diatom concentration data in future studies.

2010 ◽  
Vol 7 (10) ◽  
pp. 3083-3094 ◽  
Author(s):  
J. M. Reed ◽  
A. Cvetkoska ◽  
Z. Levkov ◽  
H. Vogel ◽  
B. Wagner

Abstract. Lake Ohrid is a site of global importance for palaeoclimate research. This study presents results of diatom analysis of a ca. 136 ka sequence, Co1202, from the northeast of the lake basin. It offers the opportunity to test diatom response across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrating the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial-interglacial shifts between the dominant planktonic taxa, Cyclotella fottii and C. ocellata, and exact correlation with geochemical proxies to mark the start of the Last Interglacial at ca. 130 ka. Importantly, diatoms show much stronger evidence in this site for warming during MIS3 than recorded in other productivity-related proxies, peaking at ca. 39 ka, prior to the extreme conditions of the Last Glacial maximum. In the light of the observed patterns, and from the results of analysis of early Holocene sediments from a second core, Lz1120, the lack of a response to Late Glacial and early Holocene warming from ca. 14.7–6.9 ka suggests the Co1202 sequence may be compromised during this phase. After ca. 7.4 ka, there is evidence for enhanced nutrient enrichment compared to the Last Interglacial, followed by a post-Medieval loss of diversity which is consistent with cooling, but not definitive. Taxonomically, morphological variability in C. fottii shows no clear trends linked to climate, but an intriguing change in central area morphology occurs after ca. 48.7 ka, coincident with a tephra layer. In contrast, C. ocellata shows morphological variation in the number of ocelli between interglacials, suggesting climatically-forced variation or evolutionary selection pressure. The application of a simple dissolution index does not track preservation quality very effectively, underlining the importance of diatom accumulation data in future studies.


2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


2019 ◽  
Vol 56 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Ashley M. Abrook ◽  
Ian P. Matthews ◽  
Alice M. Milner ◽  
Ian Candy ◽  
Adrian P. Palmer ◽  
...  

The Last Glacial–Interglacial Transition (LGIT) is a period of climatic complexity where millennial-scale climatic reorganization led to changes in ecosystems. Alongside millennial-scale changes, centennial-scale climatic events have been observed within records from Greenland and continental Europe. The effects of these abrupt events on landscapes and environments are difficult to discern at present. This, in part, relates to low temporal resolutions attained by many studies and the sensitivity of palaeoenvironmental proxies to abrupt change. We present a high-resolution palynological and charcoal study of Quoyloo Meadow, Orkney and use the Principal Curve statistical method to assist in revealing biostratigraphic change. The LGIT vegetation succession on Orkney is presented as open grassland and Empetrum heath during the Windermere Interstadial and early Holocene, and open grassland with Artemisia during the Loch Lomond Stadial. However, a further three phases of ecological change, characterized by expansions of open ground flora, are dated to 14.05–13.63, 10.94–10.8 and 10.2 cal ka BP. The timing of these changes is constrained by cryptotephra of known age. The paper concludes by comparing Quoyloo Meadow with Crudale Meadow, Orkney, and suggests that both Windermere Interstadial records are incomplete and that fire is an important landscape control during the early Holocene.Supplementary material: All raw data associated with this publication: raw pollen counts, charcoal data, Principal Curve and Rate of Change outputs and the age-model output are available at https://doi.org/10.6084/m9.figshare.c.4725269Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research


1995 ◽  
Vol 21 ◽  
pp. 103-110 ◽  
Author(s):  
G. S. Boulton ◽  
N. Hulton ◽  
M. Vautravers

A numerical model is used to simulate ice-sheet behaviour in Europe through the last glacial cycle. It is used in two modes: a forward mode, in which the model is driven by a proxy palaeoclimate record and the output compared with a geological reconstruction of ice-sheet fluctuation; and an inverse mode, in which we determine the climate function that would be required to simulate geologically reconstructed ice-sheet fluctuations. From these simulations it is concluded that extra-glacial climates may be poor predictors of ice-sheet surface climates, and that climatic transitions during the glacial period may have been much more rapid and the intensity of warming during the early Holocene much greater than hitherto supposed. Stronger climate forcing is required to drive ice-sheet expansion when sliding occurs at the bed compared with a non-sliding bed. Sliding ice sheets grow more slowly and decay more rapidly than non-sliding ice sheets with the same climate forcing.


1999 ◽  
Vol 29 ◽  
pp. 207-210 ◽  
Author(s):  
Hideki Narita ◽  
Nobuhiko Azuma ◽  
Takeo Hondoh ◽  
Michiko Fujii ◽  
Mituo Kawaguchi ◽  
...  

AbstractAir bubbles trapped near the surface of an ice sheet are transformed into air hydrates below a certain depth Their volume and number varies partly with environment and climate. Air bubbles and hydrates at 120-2200 m depth in the Dome Fuji (Dome F) ice core were examined with a microscope. This depth range covers the Holocene/Last Glacial/Last Interglacial/Previous Glacial periods. No air bubbles were seen below about 1100 m depth, and air hydrates began to appear from about 600 m. The observed number of air bubbles and hydrates was similar to that found in the Vostok ice core. For the ice covering the Last Glacial Maximum period, however the hydrate concentration in the Dome F core is about half that of the Vostok core. Reference to snow metamorphism and packing does not explain this finding.


2007 ◽  
Vol 67 (1) ◽  
pp. 152-160 ◽  
Author(s):  
Y.C. Lu ◽  
X.L. Wang ◽  
A.G. Wintle

AbstractA sensitivity-corrected Multiple Aliquot Regenerative-dose protocol has been developed for fine-grained quartz OSL dating of Chinese loess. Its reliability has been assessed on the basis of the methodology and by dating reference samples of known age close to the transition from the last interglacial paleosol (S1) to the last glacial loess (L1), which corresponds to the Marine Oxygen Isotope Stage (MIS) 5/4 transition. On the basis of the fine-grained quartz OSL-age estimates for 33 loess samples from the upper part of the Luochuan profile, a detailed chronostratigraphy of continuous dust accumulation in the past 130 ka has been proposed. Changes in the accumulation rate occurred during the last glacial period (MIS 4 to MIS 2); unexpectedly, high accumulation rates were found in the weakly developed L1–2(S) paleosol of the last interstadial (MIS 3), rather than in the classic L1–1 and L1–3 loess of the cold–dry glacial condition (MIS 2 and 4). The OSL ages show some disagreement with the previous numerical chronology for the loess–paleosol sequence based on correlation of variations in grain size with sedimentation rate; the latter method resulted in an almost constant accumulation rate from 72 to 12 ka.


1975 ◽  
Vol 26 (1) ◽  
pp. 155-180
Author(s):  
Wighart V. Koenigswald ◽  
Wolfgang Rähle

Abstract. Small mammals and gastropod faunas out of a collapsed cave were quantitatively and qualitatively studied. One complex belongs to the last glacial, the others to the early holocene, or precicely Preboreal and early Boreal according to C14 age dating. Early holocene small mammal faunas in southern Germany are represented by Pitymys subterraneus as well as pleistocene relict forms. The gastropod fauna contains Zebrina detrita in a typical Discus ruderatus / Nesovitrea petronella fauna.


Sign in / Sign up

Export Citation Format

Share Document