scholarly journals Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009

2012 ◽  
Vol 9 (2) ◽  
pp. 1759-1779 ◽  
Author(s):  
J. Yu ◽  
Y. Wang ◽  
Y. Li ◽  
H. Dong ◽  
D. Zhou ◽  
...  

Abstract. Soil carbon sequestration plays an essential role in mitigating CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC) of 0–30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land) and salt field in the modern Yellow River Delta (YRD), were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which was calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m−2 to 21.60 kg m−2 at depth of 30 cm. There were ~3.97 × 106 t and 3.98 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 yr, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.

2012 ◽  
Vol 9 (6) ◽  
pp. 2325-2331 ◽  
Author(s):  
J. Yu ◽  
Y. Wang ◽  
Y. Li ◽  
H. Dong ◽  
D. Zhou ◽  
...  

Abstract. Soil carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC) of 0–30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land) and salt field in the modern Yellow River Delta (YRD) were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which were calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m−2 to 4.25 kg m−2 at depth of 0–30 cm. There were approx. 3.559 × 106 t and 3.545 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 years, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.


2011 ◽  
Vol 92 (10) ◽  
pp. 2628-2633 ◽  
Author(s):  
Hui Wang ◽  
Renqing Wang ◽  
Yue Yu ◽  
Myron J. Mitchell ◽  
Lianjun Zhang

2013 ◽  
Vol 33 (21) ◽  
pp. 6844-6852 ◽  
Author(s):  
李玲 LI Ling ◽  
仇少君 QIU Shaojun ◽  
檀菲菲 TAN Feifei ◽  
杨红军 YANG Hongjun ◽  
刘京涛 LIU Jingtao ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Meiyun Tang ◽  
Yonggang Jia ◽  
Shaotong Zhang ◽  
Chenxi Wang ◽  
Hanlu Liu

The silty seabed in the Yellow River Delta (YRD) is exposed to deposition, liquefaction, and reconsolidation repeatedly, during which seepage flows are crucial to the seabed strength. In extreme cases, seepage flows could cause seepage failure (SF) in the seabed, endangering the offshore structures. A critical condition exists for the occurrence of SF, i.e., the critical hydraulic gradient (icr). Compared with cohesionless sands, the icr of cohesive sediments is more complex, and no universal evaluation theory is available yet. The present work first improved a self-designed annular flume to avoid SF along the sidewall, then simulated the SF process of the seabed with different consolidation times in order to explore the icr of newly deposited silty seabed in the YRD. It is found that the theoretical formula for icr of cohesionless soil grossly underestimated the icr of cohesive soil. The icr range of silty seabed in the YRD was 8–16, which was significantly affected by the cohesion and was inversely proportional to the seabed fluidization degree. SF could “pump” the sediments vertically from the interior of the seabed with a contribution to sediment resuspension of up to 93.2–96.8%. The higher the consolidation degree, the smaller the contribution will be.


Sign in / Sign up

Export Citation Format

Share Document