scholarly journals The South American monsoon variability over the last millennium in climate models

2016 ◽  
Vol 12 (8) ◽  
pp. 1681-1691 ◽  
Author(s):  
Maisa Rojas ◽  
Paola A. Arias ◽  
Valentina Flores-Aqueveque ◽  
Anji Seth ◽  
Mathias Vuille

Abstract. In this paper we assess South American monsoon system (SAMS) variability in the last millennium as depicted by global coupled climate model simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly and a stronger monsoon during the Little Ice Age (LIA). Due to the small external forcing during the past 1000 years, model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, in contrast with the rainfall reconstructions in South America. Therefore, we used an ad hoc definition of these two periods for each model simulation in order to account for model-specific signals. Thereby, several coherent large-scale atmospheric circulation anomalies are identified. The models feature a stronger monsoon during the LIA associated with (i) an enhancement of the rising motion in the SAMS domain in austral summer; (ii) a stronger monsoon-related upper-tropospheric anticyclone; (iii) activation of the South American dipole, which results in a poleward shift of the South Atlantic Convergence Zone; and (iv) a weaker upper-level subtropical jet over South America. The diagnosed changes provide important insights into the mechanisms of these climate anomalies over South America during the past millennium.

2015 ◽  
Vol 11 (6) ◽  
pp. 5651-5681 ◽  
Author(s):  
M. Rojas ◽  
P. A. Arias ◽  
V. Flores-Aqueveque ◽  
A. Seth ◽  
M. Vuille

Abstract. In this paper we assess South American Monsoon System (SAMS) variability throughout the Last Millennium as depicted by the Coupled Modelling Intercomparison Project version 5/Paleo Modelling Intercomparison Project version 3 (CMIP5/PMIP3) simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly period and a stronger monsoon during the Little Ice Age (LIA). Due to the small forcing during the past 1000 years, CMIP5/PMIP3 model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, as suggested by rainfall reconstructions in South America. However, with an ad-hoc definition of these two periods for each model simulation, several coherent large-scale atmospheric circulation anomalies were identified. The models feature a stronger Monsoon during the LIA associated with: (i) an enhancement of the rising motion in the SAMS domain in austral summer, (ii) a stronger monsoon-related upper-troposphere anticyclone, (iii) activation of the South American dipole, which results to a certain extent in a poleward shift in the South Atlantic Convergence Zone and (iv) a weaker upper-level sub tropical jet over South America, this providing important insights into the mechanisms of these climate anomalies over South America during the past millennium.


Quaternary ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
Michael Deininger ◽  
Brittany Marie Ward ◽  
Valdir F. Novello ◽  
Francisco W. Cruz

Here we present an overview of speleothem δ18O records from South America, most of which are available in the Speleothem Isotopes Synthesis and Analysis (SISAL_v1) database. South American tropical and subtropical speleothem δ18O time series are primarily interpreted to reflect changes in precipitation amount, the amount effect, and consequently history of convection intensity variability of convergence zones such as the Intertropical Convergence Zone (ITCZ) and the South America Monsoon System (SAMS). We investigate past hydroclimate scenarios in South America related to the South American Monsoon System in three different time periods: Late Pleistocene, Holocene, and the last two millennia. Precession driven summertime insolation is the main driver of convective variability over the continent during the last 120 kyrs (from present day to 120 kyrs BP), including the Holocene. However, there is a dipole between speleothem δ18O records from western and eastern South America. Records located in the central region of Brazil are weakly affected by insolation-driven variability, and instead are more susceptible to the variability associated with the South Atlantic Convergence Zone (SACZ). Cold episodic events in the Northern Hemisphere, such as Heinrich and Bond Events, and the Little Ice Age, increase the convective activity of the SAMS, resulting in increased precipitation amount in South America.


2012 ◽  
Vol 25 (13) ◽  
pp. 4600-4620 ◽  
Author(s):  
Leila M. V. Carvalho ◽  
Charles Jones ◽  
Adolfo N. D. Posadas ◽  
Roberto Quiroz ◽  
Bodo Bookhagen ◽  
...  

Abstract The South American monsoon system (SAMS) is the most important climatic feature in South America and is characterized by pronounced seasonality in precipitation during the austral summer. This study compares several statistical properties of daily gridded precipitation from different data (1998–2008): 1) Physical Sciences Division (PSD), Earth System Research Laboratory [1.0° and 2.5° latitude (lat)/longitude (lon)]; 2) Global Precipitation Climatology Project (GPCP; 1° lat/lon); 3) Climate Prediction Center (CPC) unified gauge (CPC-uni) (0.5° lat/lon); 4) NCEP Climate Forecast System Reanalysis (CFSR) (0.5° lat/lon); 5) NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis (0.5° lat/0.3° lon); and 6) Tropical Rainfall Measuring Mission (TRMM) 3B42 V6 data (0.25° lat/lon). The same statistical analyses are applied to data in 1) a common 2.5° lat/lon grid and 2) in the original resolutions of the datasets. All datasets consistently represent the large-scale patterns of the SAMS. The onset, demise, and duration of SAMS are consistent among PSD, GPCP, CPC-uni, and TRMM datasets, whereas CFSR and MERRA seem to have problems in capturing the correct timing of SAMS. Spectral analyses show that intraseasonal variance is somewhat similar in the six datasets. Moreover, differences in spatial patterns of mean precipitation are small among PSD, GPCP, CPC-uni, and TRMM data, while some discrepancies are found in CFSR and MERRA relative to the other datasets. Fitting of gamma frequency distributions to daily precipitation shows differences in the parameters that characterize the shape, scale, and tails of the frequency distributions. This suggests that significant uncertainties exist in the characterization of extreme precipitation, an issue that is highly important in the context of climate variability and change in South America.


2013 ◽  
Vol 26 (17) ◽  
pp. 6660-6678 ◽  
Author(s):  
Charles Jones ◽  
Leila M. V. Carvalho

Abstract The South American monsoon system (SAMS) is the most important climatic feature in South America. This study focuses on the large-scale characteristics of the SAMS: seasonal amplitudes, onset and demise dates, and durations. Changes in the SAMS are investigated with the gridded precipitation, Climate Forecast System Reanalysis (CFSR), and the fifth phase of the Coupled Model Intercomparison Project (CMIP5) simulations for two scenarios [“historical” and high-emission representative concentration pathways (rcp8.5)]. Qualitative comparisons with a previous study indicate that some CMIP5 models have significantly improved their representation of the SAMS relative to their CMIP3 versions. Some models exhibit persistent deficiencies in simulating the SAMS. CMIP5 model simulations for the historical experiment show signals of climate change in South America. While the observational data show trends, the period used is too short for final conclusions concerning climate change. Future changes in the SAMS are analyzed with six CMIP5 model simulations of the rcp8.5 high-emission scenario. Most of the simulations show significant increases in seasonal amplitudes, early onsets, late demises, and durations of the SAMS. The simulations for this scenario project a 30% increase in the amplitude from the current level by 2045–50. In addition, the rcp8.5 scenario projects an ensemble mean decrease of 14 days in the onset and 17-day increase in the demise date of the SAMS by 2045–50. The results additionally indicate lack of spatial agreement in model projections of changes in total wet-season precipitation over South America during 2070–2100. The most consistent CMIP5 projections analyzed here are the increase in the total monsoon precipitation over southern Brazil, Uruguay, and northern Argentina.


2012 ◽  
Vol 8 (4) ◽  
pp. 1309-1321 ◽  
Author(s):  
M. Vuille ◽  
S. J. Burns ◽  
B. L. Taylor ◽  
F. W. Cruz ◽  
B. W. Bird ◽  
...  

Abstract. We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.


2012 ◽  
Vol 8 (1) ◽  
pp. 637-668 ◽  
Author(s):  
M. Vuille ◽  
S. J. Burns ◽  
B. L. Taylor ◽  
F. W. Cruz ◽  
B. W. Bird ◽  
...  

Abstract. We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric General Circulation Model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity over the tropical continent. This interpretation is supported by several independent proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or historical archives. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 299
Author(s):  
Fernanda Marcello ◽  
Ilana Wainer ◽  
Peter R. Gent ◽  
Bette L. Otto-Bliesner ◽  
Esther C. Brady

Interocean waters that are carried northward through South Atlantic surface boundary currents get meridionally split between two large-scale systems when meeting the South American coast at the western subtropical portion of the basin. This distribution of the zonal flow along the coast is investigated during the Last Millennium, when natural forcing was key to establish climate variability. Of particular interest are the changes between the contrasting periods of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The investigation is conducted with the simulation results from the Community Earth System Model Last Millennium Ensemble (CESM-LME). It is found that the subtropical South Atlantic circulation pattern differs substantially between these natural climatic extremes, especially at the northern boundary of the subtropical gyre, where the westward-flowing southern branch of the South Equatorial Current (sSEC) bifurcates off the South American coast, originating the equatorward-flowing North Brazil Undercurrent (NBUC) and the poleward Brazil Current (BC). It is shown that during the MCA, a weaker anti-cyclonic subtropical gyre circulation took place (inferred from decreased southern sSEC and BC transports), while the equatorward transport of the Meridional Overturning Circulation return flow was increased (intensified northern sSEC and NBUC). The opposite scenario occurs during the LIA: a more vigorous subtropical gyre circulation with decreased northward transport.


2020 ◽  
Vol 33 (18) ◽  
pp. 7859-7874
Author(s):  
Ana Claudia Thome Sena ◽  
Gudrun Magnusdottir

AbstractProjected changes in the South American monsoon system by the end of the twenty-first century are analyzed using the Community Earth System Model Large Ensemble (CESM-LENS). The wet season is shorter in LENS when compared to observations, with the mean onset occurring 19 days later and the mean retreat date 21 days earlier in the season. Despite a precipitation bias, the seasonality of rainfall over South America is reproduced in LENS, as well as the main circulation features associated with the development of the South American monsoon. Both the onset and retreat of the wet season over South America are delayed in the future compared to current climate by 3 and 7 days, respectively, with a slightly longer wet season. Central and southeastern Brazil are projected to get wetter as a result of moisture convergence from the strengthening of the South Atlantic low-level jet and a weaker South Atlantic subtropical high. The Amazon is projected to get drier by the end of the century, negatively affecting rain forest productivity. During the wet season, an increase in the frequency and intensity of extreme precipitation events is found over most of South America, and especially over northeastern and southern Brazil and La Plata. Meanwhile, during the dry season an increase in the maximum number of consecutive dry days is found over northeastern Brazil and the northern Amazon.


1990 ◽  
Vol 2 (1) ◽  
pp. 127-132
Author(s):  
Dana Griffin III

The South American paramos appeared in Pliocene times and persist to the present day. The moss flora of this habitat consists of an estimated 400 species that comprise 8 floristic groups. In Venezuela these groups and their percent representation are as follows: neotropical 37%, Andean 26%, cosmopolitan 18%, Andean-African 8%, neotropical-Asiatic 3%, neotropical-Australasian 2%, temperate Southern Hemisphere 2% and northern boreal-temperate 2%. Acrocarpous taxa outnumber pleurocarps by nearly 3:1. The neotropical and Andean floristic stocks likely were present prior to late Pliocene orogenies that elevated the cordillera above climatic timberlines. These species may have existed in open, marshy areas (paramillos) or may have evolved from cloud forest ancestors. Taxa of northern boreal- temperate affinities, including those with Asiatic distributions, probably arrived in the paramos during the Pleistocene, a period which may also have seen the establishment in the Northern Andes of some cosmopolitan elements. Species with temperate Southern Hemisphere and Australasian affinities likely spread first to austral South America thence migrated northward during a cool, moist interval sometime over the past 2.5-3 million years or may have become established in the paramos as a result of long- distance dispersal.


Sign in / Sign up

Export Citation Format

Share Document