scholarly journals Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

2018 ◽  
Vol 14 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Anna Joy Drury ◽  
Thomas Westerhold ◽  
David Hodell ◽  
Ursula Röhl

Abstract. Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in  ∼  11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed  ∼  6.4 Ma, marking a strengthening in the cryosphere–carbon cycle coupling. A large  ∼  0.7 ‰ double excursion is revealed  ∼  6.4–6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions  ∼  6.4–6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST) estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean. Comparisons of the revised Site 982 stratigraphy to high-resolution astronomically tuned benthic δ18O stratigraphies from ODP Site 926 (equatorial Atlantic) and Ain el Beida (north-western Morocco) show that prior inconsistencies in short-term excursions are now resolved. The identification of key new cycles at Site 982 further highlights the requirement for the current scheme for late Miocene marine isotope stages to be redefined. Our new integrated deep-sea benthic stable isotope stratigraphy and astrochronology from Site 982 will facilitate future high-resolution late Miocene to early Pliocene climate research.

2017 ◽  
Author(s):  
Anna Joy Drury ◽  
Thomas Westerhold ◽  
David Hodell ◽  
Ursula Röhl

Abstract. Ocean Drilling Programme (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution stable isotope stratigraphy and astrochronology between 4.5 and 8.0 Ma. Splice revisions and verifications resulted in ~ 11 m of gaps in the original Site 982 isotope stratigraphy. Our new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41-kyr beat in both the benthic δ13C and δ18O is also observed ~ 6.4 Ma, marking a strengthening in the cryosphere-carbon cycle coupling. A large ~ 0.7 ‰ double excursion is revealed ~ 6.4–6.3 Ma, which also marks the onset an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4–5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions ~ 6.4–6.3 Ma and TG20/22 coincide with the coolest alkenone-derived SST estimates from Site 982, suggesting a strong connection between the late Miocene global cooling and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean. Comparisons of the revised Site 982 stratigraphy to high-resolution astronomically tuned benthic δ18O stratigraphies from ODP Site 926 (equatorial Atlantic) and Ain el Beida (north western Morocco) show that prior inconsistencies in short-term excursions are now resolved. Our new integrated deep-sea benthic stable isotope stratigraphy and astrochronology from Site 982 will facilitate future high-resolution late Miocene to early Pliocene climate research.


1937 ◽  
Vol 18 (1) ◽  
pp. 224
Author(s):  
W. H. Bradley ◽  
M. N. Bramlette ◽  
J. A. Cushman ◽  
L. G. Henbest ◽  
K. E. Lahman ◽  
...  

2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


2020 ◽  
Vol 73 ◽  
pp. 125664 ◽  
Author(s):  
Suzana Živaljić ◽  
Anja Scherwass ◽  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Pablo Quintela-Alonso ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Patricia Puerta ◽  
Clare Johnson ◽  
Marina Carreiro-Silva ◽  
Lea-Anne Henry ◽  
Ellen Kenchington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document