scholarly journals Modeling a modern-like <i>p</i>CO<sub>2</sub> warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model

2020 ◽  
Vol 16 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ning Tan ◽  
Camille Contoux ◽  
Gilles Ramstein ◽  
Yong Sun ◽  
Christophe Dumas ◽  
...  

Abstract. The mid-Piacenzian warm period (3.264 to 3.025 Ma) is the most recent geological period with present-like atmospheric pCO2 and is thus expected to have exhibited a warm climate similar to or warmer than the present day. On the basis of understanding that has been gathered on the climate variability of this interval, a specific interglacial (Marine Isotope Stage KM5c, MIS KM5c; 3.205 Ma) has been selected for the Pliocene Model Intercomparison Project phase 2 (PlioMIP 2). We carried out a series of experiments according to the design of PlioMIP2 with two versions of the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM): IPSL-CM5A and IPSL-CM5A2. Compared to the PlioMIP 1 experiment, run with IPSL-CM5A, our results show that the simulated MIS KM5c climate presents enhanced warming in mid- to high latitudes, especially over oceanic regions. This warming can be largely attributed to the enhanced Atlantic Meridional Overturning Circulation caused by the high-latitude seaway changes. The sensitivity experiments, conducted with IPSL-CM5A2, show that besides the increased pCO2, both modified orography and reduced ice sheets contribute substantially to mid- to high latitude warming in MIS KM5c. When considering the pCO2 uncertainties (+/-50 ppmv) during the Pliocene, the response of the modeled mean annual surface air temperature to changes to pCO2 (+/-50 ppmv) is not symmetric, which is likely due to the nonlinear response of the cryosphere (snow cover and sea ice extent). By analyzing the Greenland Ice Sheet surface mass balance, we also demonstrate its vulnerability under both MIS KM5c and modern warm climate.

2019 ◽  
Author(s):  
Ning Tan ◽  
Camille Contoux ◽  
Gilles Ramstein ◽  
Yong Sun ◽  
Christophe Dumas ◽  
...  

Abstract. The mid-Piacenzian warm period (3.264 to 3.025 Ma) is the most recent geological period with a present-like atmospheric pCO2 exhibiting significant warming relative to present conditions. With the advanced understanding of the climate variability of this interval, a specific interglacial (marine isotope stage KM5c, MIS KM5c, 3.205 Ma) is selected for Pliocene Model Intercomparison Project phase 2 (PlioMIP 2) and updated boundary conditions are provided. In this study, we carried out series of experiments according to the design of PlioMIP2 with two versions of the IPSL Atmosphere-Ocean Coupled General Circulation Model (AOGCM) (IPSL-CM5A and IPSL-CM5A2). By comparing with PlioMIP 1 experiment, run with IPSL-CM5A, our results show that the simulated MIS KM5c climate presents enhanced warming in mid-to-high latitudes, especially in ocean regions. This warming can be attributed to the largely enhanced Atlantic Meridional Overturning Circulation caused by the high latitude seaway changes. The tier experiments, conducted with IPSL-CM5A2 (with faster computation scheme), show that besides the increased pCO2, both modified orography and reduced ice sheets contribute substantially in mid-to-high latitudes warming of MIS KM5c. When considering the pCO2 uncertainties, the warming pattern changes, our model response to the variation of pCO2 by &amp;pm;50 ppmv is not symmetric in the surface air temperature, due to the non-linear response of the cryosphere (snow cover and sea ice extent). By analysing the Greenland Ice Sheet surface mass balance, we also demonstrate its vulnerability under both MIS KM5c and modern warm climate.


2021 ◽  
Author(s):  
Ning Tan ◽  
Camille Contoux ◽  
Gilles Ramstein ◽  
Yong Sun ◽  
Christophe Dumas ◽  
...  

&lt;p&gt;The mid-Piacenzian warm period (3.264 to 3.025 Ma) is the most recent geological period with present-like atmospheric pCO&lt;sub&gt;2&lt;/sub&gt;. A specific interglacial (Marine Isotope Stage KM5c, MIS KM5c; 3.205 Ma) has been selected for the Pliocene Model Intercomparison Project phase 2 (PlioMIP 2). We carried out a series of experiments according to the design of PlioMIP2 with two versions of IPSL atmosphere&amp;#8211;ocean coupled general circulation model (AOGCM): IPSL-CM5A and IPSL-CM5A2. Our results show that the simulated MIS KM5c climate presents enhanced warming at mid- to high latitudes when compared to the PlioMIP 1, resulting from the enhanced Atlantic Meridional Overturning Circulation caused by the high-latitude seaway changes. The sensitivity experiments, conducted with IPSL- CM5A2, show that, apart from the pCO2,&amp;#160; both modified orography and reduced ice sheets contribute substantially to mid- to high latitude warming in MIS KM5c. When considering the pCO2 uncertainties (+/&amp;#8722;50 ppmv) during the Pliocene, the response of the modeled mean annual surface air temperature to changes to pCO&lt;sub&gt;2&lt;/sub&gt; (+/&amp;#8722;50 ppmv) is not symmetric, which is likely due to the nonlinear response of the cryosphere (snow cover and sea ice extent).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document