scholarly journals Synergy of the westerly winds and monsoons in lake evolution of global closed basins since the Last Glacial Maximum

2020 ◽  
Author(s):  
Yu Li ◽  
Yuxin Zhang

Abstract. Monsoon system and westerly circulation, to which climate change responds differently, are two important components of global atmospheric circulation, interacting with each other in the mid-to-low latitudes and having synergy effect to those regions. Relevant researches on global millennial-scale climate change in monsoon and westerlies regions are mostly devoted to multi-proxy analyses of lakes, stalagmites, ice cores, marine and eolian sediments. Different responses from these proxies to long-term environmental change make understanding climate change pattern in monsoonal and westerlies regions difficult. Accordingly, we disaggregated global closed basins into areas governed by monsoon and westerly winds and unified palaeoclimate indicators, as well as combined with the lake models and paleoclimate simulations for tracking millennial-scale evolution characteristics and mechanisms of global monsoon and westerly winds since the Last Glacial Maximum (LGM). Our results concluded that the effective moisture in most closed basins of the mid-latitudes Northern Hemisphere is mainly a trend on the decrease since the LGM, and of the low-latitudes is mainly a trend on the rise. Millennial-scale water balance change exhibits an obvious boundary between global westerlies and monsoon regions in closed basins, particularly in the Northern Hemisphere. In the monsoon dominated closed basins of the Northern Hemisphere, humid climate prevails in the early-mid Holocene and relative dry climate appears in the LGM and late Holocene. While in the westerly winds dominated closed basins of the Northern Hemisphere, climate is characterized by relative humid LGM and mid-Holocene (MH) compared with the dry early Holocene, which is likely to be connected with precipitation brought by the westerly circulation. This study provides insights into long-term evolution and synergy of monsoon and westerly wind systems and basis for projection of future hydrological balance in the low-to-mid latitudes.

2020 ◽  
Vol 16 (6) ◽  
pp. 2239-2254
Author(s):  
Yu Li ◽  
Yuxin Zhang

Abstract. The monsoon system and westerly circulation, to which climate change responds differently, are two important components of global atmospheric circulation interacting with each other in the middle to low latitudes. Relevant research on global millennial-scale climate change in monsoon and westerly regions is mostly devoted to multi-proxy analyses of lakes, stalagmites, ice cores, and marine and eolian sediments. Different responses from these proxies to long-term environmental change make understanding climate change patterns in monsoon and westerly regions difficult. Accordingly, we disaggregated global closed basins into areas governed by monsoon and westerly winds, unified paleoclimate indicators, and added lake models and paleoclimate simulations to emphatically track millennial-scale evolution characteristics and mechanisms of East Asian summer monsoon and westerly winds since the Last Glacial Maximum (LGM). Our results reveal that millennial-scale water balance change exhibits an obvious boundary between global monsoon and westerly regions in closed basins, particularly in the Northern Hemisphere. The effective moisture in most closed basins of the midlatitude Northern Hemisphere mainly exhibits a decreasing trend since the LGM, while that of the low latitudes shows an increasing trend. In the monsoon-dominated closed basins of Asia, a humid climate prevails in the early to mid-Holocene, and a relatively dry climate appears in the LGM and late Holocene. In the westerly-wind-dominated closed basins of Asia, the climate is characterized by a humid LGM and mid-Holocene (MH) compared with the dry early and late Holocene, which is likely to be connected to precipitation brought by the westerly circulation. This study provides insight into the long-term evolution and synergy of westerly winds and monsoon systems as well as a basis for the projection of future hydrological balance.


2019 ◽  
Author(s):  
Fabian Rey ◽  
Erika Gobet ◽  
Christoph Schwörer ◽  
Albert Hafner ◽  
Willy Tinner

Abstract. Since the Last Glacial Maximum (LGM, end ca. 19 000 cal BP) Central European plant communities were shaped by changing climatic and anthropogenic disturbances. Understanding long-term ecosystem reorganizations in response to past environmental changes is crucial to draw conclusions about the impact of future climate change. So far, it has been difficult to address the post-deglaciation timing and ecosystem dynamics due to a lack of well-dated and continuous sediment sequences covering the entire period after the LGM. Here, we present a new palaeoecological study with exceptional chronological time control using pollen, spores and microscopic charcoal from Moossee (Swiss Plateau, 521 m a.s.l.) to reconstruct the vegetation and fire history over the last ca. 19 000 years. After lake formation in response to deglaciation, five major pollen-inferred ecosystem rearrangements occurred at ca. 18 800 cal BP (establishment of steppe tundra), 16 000 cal BP (spread of shrub tundra), 14 600 cal BP (expansion of boreal forests), 11 600 cal BP (establishment of first temperate deciduous tree stands composed of e.g. Quercus, Ulmus, Alnus) and 8200 cal BP (first occurence of mesophilous Fagus sylvatica trees). These vegetation shifts were released by climate changes at 19 000, 16 000, 14 700, 11 700 and 8200 cal BP. Vegetation responses occurred with no apparent time lag to climate change, if the mutual chronological uncertainties are considered. This finding is in agreement with further evidence from Southern and Central Europe and might be explained with proximity to the refugia of boreal and temperate trees (< 400 km) and rapid species spreads. Our palynological record sets the beginning of millennial-scale land use with periodically increased fire and agricultural activities of the Neolithic period at ca. 7000 cal BP (5050 cal BC). Subsequently, humans rather than climate triggered changes in vegetation composition and structure. We conclude that Fagus sylvatica forests were resilient to long-term anthropogenic and climatic impacts of the mid and the late Holocene. However, future climate warming and in particular declining moisture availability may cause unprecedented reorganizations of Central European beech-dominated forest ecosystems.


2020 ◽  
Vol 16 (5) ◽  
pp. 1987-1998
Author(s):  
Xinzhong Zhang ◽  
Yu Li ◽  
Wangting Ye ◽  
Simin Peng ◽  
Yuxin Zhang ◽  
...  

Abstract. Closed basins, mainly located in subtropical and temperate drylands, have experienced alarming declines in water storage in recent years. An assessment of long-term hydroclimate change in those regions remains unquantified at a global scale as of yet. By integrating lake records, PMIP3–CMIP5 simulations and modern observations, we assess the wet–dry status of global closed basins during the Last Glacial Maximum, mid-Holocene, pre-industrial, and 20th and 21st century periods. Results show comparable patterns of general wetter climate during the mid-Holocene and near-future warm period, mainly attributed to the boreal summer and winter precipitation increasing, respectively. The long-term pattern of moisture change is highly related to the high-latitude ice sheets and low-latitude solar radiation, which leads to the poleward moving of westerlies and strengthening of monsoons during the interglacial period. However, modern moisture changes show correlations with El Niño–Southern Oscillation in most closed basins, such as the opposite significant correlations between North America and southern Africa and between central Eurasia and Australia, indicating strong connection with ocean oscillation. The strategy for combating future climate change should be more resilient to diversified hydroclimate responses in different closed basins.


2020 ◽  
Author(s):  
Xinzhong Zhang ◽  
Yu Li ◽  
Wangting Ye ◽  
Simin Peng ◽  
Yuxin Zhang ◽  
...  

Abstract. Closed basins, mainly located in subtropic and temperate drylands, have experienced alarming decline in water storage in recent years. However, a long-term assessment of hydroclimate changes in the region remains unquantified at a global scale. By intergrating the lake records, PMIP3/CMIP5 simulations and modern observations, we assess the wet/dry status during the Last Glacial Maximum, mid-Holocene, pre-industrial, 20th and 21th century periods in global closed basins. Results show comparable wetting at a global scale during the mid-Holocene and modern warming periods with regional mechanism differences, attributed to the boreal winter and summer precipitation increasing, respectively. The long-term moisture change pattern is mainly controlled by the millennial-scale insolation variation, which lead to the poleward moving of westerlies and strengthening of monsoons during the interglacial period. However, modern moisture change trends are significantly associated with ENSO in most of closed basins, indicating strong connection with ocean oscillation. Our research suggests that moisture changes in global closed basins are more resilient than previous thought to warm periods.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 220 ◽  
Author(s):  
WenQing Li ◽  
MingMing Shi ◽  
Yuan Huang ◽  
KaiYun Chen ◽  
Hang Sun ◽  
...  

Salicaceae is a family of temperate woody plants in the Northern Hemisphere that are highly valued, both ecologically and economically. China contains the highest species diversity of these plants. Despite their widespread human use, how the species diversity patterns of Salicaceae plants formed remains mostly unknown, and these may be significantly affected by global climate warming. Using past, present, and future environmental data and 2673 georeferenced specimen records, we first simulated the dynamic changes in suitable habitats and population structures of Salicaceae. Based on this, we next identified those areas at high risk of habitat loss and population declines under different climate change scenarios/years. We also mapped the patterns of species diversity by constructing niche models for 215 Salicaceae species, and assessed the driving factors affecting their current diversity patterns. The niche models showed Salicaceae family underwent extensive population expansion during the Last Inter Glacial period but retreated to lower latitudes during and since the period of the Last Glacial Maximum. Looking ahead, as climate warming intensifies, suitable habitats will shift to higher latitudes and those at lower latitudes will become less abundant. Finally, the western regions of China harbor the greatest endemism and species diversity of Salicaceae, which are significantly influenced by annual precipitation and mean temperature, ultraviolet-B (UV-B) radiation, and the anomaly of precipitation seasonality. From these results, we infer water–energy dynamic equilibrium and historical climate change are both the main factors likely regulating contemporary species diversity and distribution patterns. Nevertheless, this work also suggests that other, possibly interacting, factors (ambient energy, disturbance history, soil condition) influence the large-scale pattern of Salicaceae species diversity in China, making a simple explanation for it unlikely. Because Southwest China likely served as a refuge for Salicaceae species during the Last Glacial Maximum, it is a current hotspot for endemisms. Under predicted climate change, Salicaceae plants may well face higher risks to their persistence in southwest China, so efforts to support their in-situ conservation there are urgently needed.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1239-1259 ◽  
Author(s):  
John Southon

Some of the most valuable paleoclimate archives yet recovered are the multi-proxy records from the Greenland GISP2 and GRIP ice cores. The crucial importance of these data arises in part from the strong correlations that exist between the Greenland δ18O records and isotopic or other proxies in numerous other Northern Hemisphere paleoclimate sequences. These correlations could, in principle, allow layer-counted ice-core chronologies to be transferred to radiocarbon-dated paleoclimate archives, thus providing a 14C calibration for the Last Glacial Maximum and Isotope Stage 3, back to the instrumental limits of the 14C technique. However, this possibility is confounded by the existence of numerous different chronologies, as opposed to a single (or even a “best”) ice-core time scale. This paper reviews how the various chronologies were developed, summarizes the differences between them, and examines ways in which further research may allow a 14C calibration to be established.


Sign in / Sign up

Export Citation Format

Share Document