scholarly journals The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations

2013 ◽  
Vol 9 (1) ◽  
pp. 453-466 ◽  
Author(s):  
W. Zheng ◽  
B. Wu ◽  
J. He ◽  
Y. Yu

Abstract. Ten Coupled General Circulation Models (CGCMs) participated in the third phase of Paleoclimate Modelling Intercomparison Project (PMIP3) are assessed for the East Asian Summer Monsoon (EASM) in both the pre-Industrial (PI, 0 ka) and mid-Holocene (MH, 6 ka) simulations. Results show that the PMIP3 model median captures well the large-scale characteristics of the EASM, including the two distinct features of the Meiyu rainbelt and the stepwise meridional displacement of the monsoonal rainbelt. At mid-Holocene, the PMIP3 model median shows significant warming (cooling) during boreal summer (winter) over Eurasia continent that are dominated by the changes of insolation. However, the PMIP3 models fail to simulate a warmer annual mean and winter surface air temperature (TAS) over eastern China as derived from proxy records. The EASM at MH are featured by the changes of large-scale circulation over Eastern China while the changes of precipitation are not significant over its sub-domains of the Southern China and the lower reaches of Yangzi River. The inter-model differences for the monsoon precipitation can be associated with different configurations of the changes in large-scale circulation and the water vapour content, of which the former determines the sign of precipitation changes. The large model spread for the TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply to those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation. Except that the PMIP3 model median captured the warming of annual mean TAS over Tibetan Plateau, no significant improvements can be concluded when compared with the PMIP2 models results.

2016 ◽  
Vol 29 (23) ◽  
pp. 8495-8514 ◽  
Author(s):  
Zhixiang Xiao ◽  
Anmin Duan

Abstract The relationship between Tibetan Plateau (TP) snow cover and the East Asian summer monsoon (EASM) has long been discussed, but the underlying mechanism remains controversial. In this paper, the snow–albedo and snow–hydrology feedbacks over the TP are investigated based on multiple sources of snow data for the period 1979–2011. The results indicate that winter snow cover plays an important role in cooling local air temperature through the snow–albedo effect; the TP surface net solar radiation in years with above-normal snow cover is approximately 18 W m−2 less than that in below-normal snow cover years. However, data analysis demonstrates that persistent effects of winter snow cover are limited to the period from winter to spring over most parts of the central and eastern TP. Therefore, the preceding snow cover over the central and eastern TP exerts little influence over either the in situ summer atmospheric heat source or the EASM, because of its limited persistence. In contrast, the effects of winter or spring snow cover anomalies over the western TP and the Himalayas can last until summer, and these anomalies further influence the EASM by modulating moisture transport to eastern China and favoring eastward-propagating synoptic disturbances that are generated over the TP. Generally, above-normal snow cover over the western TP and the Himalayas facilitates abundant summer precipitation between the Yangtze and Yellow River basins, which is confirmed by results from a regional Weather Research and Forecasting model simulation.


2014 ◽  
Vol 27 (8) ◽  
pp. 3052-3072 ◽  
Author(s):  
Jinqiang Chen ◽  
Simona Bordoni

Abstract This paper investigates the dynamical processes through which the Tibetan Plateau (TP) influences the East Asian summer monsoon (EASM) within the framework of the moist static energy (MSE) budget, using both observations and atmospheric general circulation model (AGCM) simulations. The focus is on the most prominent feature of the EASM, the so-called meiyu–baiu (MB), which is characterized by a well-defined, southwest–northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean between mid-June and mid-July. Observational analyses of the MSE budget of the MB front indicate that horizontal advection of moist enthalpy, and primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the TP is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.


2012 ◽  
Vol 8 (4) ◽  
pp. 3251-3276 ◽  
Author(s):  
W. Zheng ◽  
B. Wu ◽  
J. He ◽  
Y. Yu

Abstract. Ten Coupled General Circulation Models (CGCMs) participating the third phase of Paleoclimate Modeling Intercomparison project (PMIP3) are assessed for the simulations of East Asian Summer Monsoon (EASM) at both the present climate and mid-Holocene. Results show that the PMIP3 model median well captures the characteristics of the EASM, including the two distinct features of the Meiyu Front and the stepwise meridional displacement of the monsoon rainbelt. At mid-Holocene, the enhanced EASM is simulated by the PMIP3 models. The model median shows that the changes of surface air temperature and precipitation are within the range as indicated by the proxy data over the eastern China. Both the changes of monsoonal circulation and the water vapor content favor the increasing of summer precipitation. Regional features can be identified between models because of their different simulations of the above changes. The model spread for the surface air temperature (TAS) is relatively smaller when compared with that of PMIP2 models in both the Northern Hemisphere and the eastern China. However, the model spread of summer precipitation is larger among PMIP3 models, particularly in the lower reaches of Yangzi River. The TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply for those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2018 ◽  
Vol 115 (9) ◽  
pp. 2016-2021 ◽  
Author(s):  
Jesse A. Day ◽  
Inez Fung ◽  
Weihan Liu

The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.


Sign in / Sign up

Export Citation Format

Share Document