scholarly journals Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

2017 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Céline Assmann ◽  
Amanda Scott ◽  
Dondra Biller

Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters – see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

2017 ◽  
Author(s):  
Céline Assmann ◽  
Amanda Scott ◽  
Dondra Biller

Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters. Online Organic Carbon Monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it drives smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online TOC monitoring.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Elorm Obotey Ezugbe ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Dennis Asante-Sackey ◽  
Gloria Amo-Duodu

Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.16 and 0.14 L/min respectively), using 70 g/L NaCl solution as the draw solution. The results obtained showed an average of 97.67% rejection of SO42− and CO32− while Cl− was found to enrich the feed solution (FS). An average removal of 88.92% was achieved for the organics. A permeation flux of 5.06 L/m2.h was obtained. The kinetics of the ions transport was studied, and was found to fit the second-order kinetic model, with Pearson’s R-values of 0.998 and 0.974 for Cl− and CO32− respectively. The study proves FO as a potential technology to desalinate saline MWW.


2005 ◽  
Vol 77 (7) ◽  
pp. 3074-3079 ◽  
Author(s):  
Angélica Villarruel-López ◽  
Elizabeth Fernández-Rendón ◽  
Lydia Mota-de-la-Garza ◽  
Jorge Ortigoza-Ferado

2016 ◽  
Vol 21 (2) ◽  
Author(s):  
AIDA DERMOUCHI ◽  
BENCHEIKH-LEHOCINE MOSSAAB ◽  
SIHEM ARRIS ◽  
VALENTIN NEDEFF ◽  
NARCIS BARSAN

Electrocoagulation (EC) has been known for over a century. Applications in industry as water and wastewater treatment processes were adapted for the removal of suspended solids, organic compounds, COD (Chemical oxygen demand), BOD (biochemical oxygen demand), metallic and non-metallic pollution. The main advantage in EC technology is the fact that it works without the addition of chemical products. The DC current between metallic electrodes immersed in the effluent is used as an energy source for this technique, which causes their dissolution. The effect of the main parameters, current density, treatment time, initial pH, temperature, electrode materials, conductivity and distance between the electrodes were investigated. According to the conclusion of the works published in recent years, the removal efficiencies of pollutants materials by EC process are very important.


Sign in / Sign up

Export Citation Format

Share Document