pathogenic microbes
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 204)

H-INDEX

29
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 175
Author(s):  
Tawni L. Crippen ◽  
Baneshwar Singh ◽  
Robin C. Anderson ◽  
Cynthia L. Sheffield

The facilities used to raise broiler chickens are often infested with litter beetles (lesser mealworm, Alphitobius diaperinus). These beetles have been studied for their carriage of pathogenic microbes; however, a more comprehensive microbiome study on these arthropods is lacking. This study investigated their microbial community in a longitudinal study throughout 2.5 years of poultry production and after the spent litter, containing the mealworms, was piled in pastureland for use as fertilizer. The mean most abundant phyla harbored by the beetles in house were the Proteobacteria (39.8%), then Firmicutes (30.8%), Actinobacteria (21.1%), Tenericutes (5.1%), and Bacteroidetes (1.6%). The community showed a modest decrease in Firmicutes and increase in Proteobacteria over successive flock rotations. The beetles were relocated within the spent litter to pastureland, where they were found at least 19 weeks later. Over time in the pastureland, their microbial profile underwent a large decrease in the percent of Firmicutes (20.5%). The lesser mealworm showed an ability to survive long-term in the open environment within the spent litter, where their microbiome should be further assessed to both reduce the risk of transferring harmful bacteria, as well as to enhance their contribution when the litter is used as a fertilizer.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Mohamed E. El-Hefnawy ◽  
Sultan Alhayyani ◽  
Mohsen M. El-Sherbiny ◽  
Mohamed I. Sakran ◽  
Mohamed H. El-Newehy

Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than −30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.


Author(s):  
A. M. Mansour ◽  
bahaa Hemdan ◽  
Ali B Abou Hammad ◽  
hisham saleh ◽  
amany M elnahrawy

Abstract The structural and optical properties of 30 ZnO: 50 SiO2: (20-x) CuO (ZSC) loaded with E102 (tartrazine dye) (where x=0.02, 0.05, 0.07 wt.%) nanoclusters have been explored. These nanoclusters were synthesized by a sol-gel route followed by a very controlled crystallization process at 500oC. The phase formation, structural modification, and particle distribution behavior of these nanoclusters have been studied using XRD and TEM analysis to monitor the domestic environment for ZCS-E102. The optical transmission and reflection properties of nanoclusters in the UV-Vis-NIR range were studied for the present nanoclusters from which the optical absorption was calculated. Tauc method is employed to estimate the type and value of energy needed to gap transition from absorption data. The direct and indirect gap shows decreased energy need for its transition by E102 concentration increase. The antimicrobial potentials of four synthesized nanoclusters were performed against some pathogenic microbes. The toxicity performance of all studied nanoclusters is measured. Results revealed that ZSC-0.07E102 is showed an effective antimicrobial action against four tested pathogenic microbes in terms of excellent inhibitory effect and biocompatibility show noticeable potential in the antimicrobial application. Therefore, this proficient nanomaterial is a promising choice for biomedical purposes.


2021 ◽  
Vol 3 (4) ◽  
pp. 103-109
Author(s):  
Lucky Iserhienrhien ◽  
Okolie Paulinus ◽  
Etaware Mudiaga

The increase in synthetic drug resistance by pathogenic microbes has led to the development of plant-based antimicrobial drugs that are more reliable and non-lethal to human health at increased dosage. The antibacterial and antifungal potential of Geophila obvallata extracts were tested on clinical isolates (Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis,Streptococcus pyogenes, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus) using standard techniques. The zones of inhibition were shown to increase with increasing concentrations of the extracts. Inhibition was higher in Gram positive bacteria (9.10 to 31.00mm in 40mg/mL concentration) than Gram negative bacteria (3.50 to 27.00mm in 40mg/mL concentration), while the fungal isolates had the least zones of inhibition (2.83 to 25.00mm in 40mg/ml concentration). The minimum inhibitory concentrations (MIC) were lowest in the methanol extract than aqueous extract. Simillarly, MIC for bacteria (Bacillus subtilis) and fungi (Aspergillus fumigatus) were 0.3 and 2.0mg/mL respectively. Methanol extract had higher antibacterial and antifungal effect than aqueous extract. Ciprofloxacin, used as control for bacteria had the highest inhibitory activity (33.67mm) when compared to that of the highest concentration of plant extracts administered. Also, ketoconazole gave the highest zones of inhibition (32.33mm) on the fungi isolates compared to those of the extracts. The performance of the methanol extract of 40mg/mL of Geophila obvallata in the inhibition of Bacillus subtilis was not significantly different from that of Ciprofloxacin. The findings in this study therefore validate the antimicrobial effect of Geophila obvallata leaf extracts as well as its possible application in medicine.  


2021 ◽  
Vol 18 (4) ◽  
pp. 743-756
Author(s):  
Najwa Alharbi ◽  
Hanan Mohammed Alhashim

Beauty salons may draw in customers with glamour; however, they could also be considered a major health issue. They can cause the spread of bacterial and fungal infections. The purpose of this research was to identify pathogenic microbes from beauty salon tools. Microorganisms from contaminated salon tools and cosmetic products were isolated using various selective media. Microbial isolates were identified based on their molecular and biochemical characteristics. The most common bacterial species isolated were Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus equorum, Microbacterium spp., Bacillus siamensis, Bacillus subtilis, Sphingomonas aeria, Macrococcus spp., Microbacterium oxydans, Brachybacterium spp., Micrococcus luteus, and Brachybacterium nesterenkovii. Fungal isolates included Penicillium spp., Aspergillus niger, Purpureocillium lilacium, and Aspergillus flavus. Overall, Staphylococcus spp. and A. niger were the most common organisms isolated from the samples. The presence of potential pathogens indicates that the tools used in salons have not been adequately sterilized and the high risk of diseases spread.


2021 ◽  
Vol 12 (2) ◽  
pp. 186-198
Author(s):  
Junie Suriawati ◽  
Reni Anggraini ◽  
Siti Rahayu Rachmawati ◽  
Yulis Adriana

Syringes are one of the pharmaceutical preparations that are in high demand. In healthcare institutions, syringes are used to aid in patient care and examination. Pharmaceutical preparations, such as various syringes, are widely available in the Pasar Pramuka. Syringes must be free from microbes and used syringes should not be reused. Microbiological sterility tests can be performed on a syringe to determine whether it is sterile or not. The purpose of the study is to test the sterility of syringes obtained from the Pasar Pramuka. A random sample of a syringe is being used in the study as an experimental method. The syringes were isolated and incubated for 14 days in Fluid Thioglycollate Medium (FTM) and Trypticase Soy Broth (TSB) at 30-35 oC and 20-25 oC, respectively, with frequent observations. If FTM and TSB media were turbid, then isolated into selective media based on their microbe as controls, namely Clostridium sporogenes ATCC 19404, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 25922, Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, Salmonella typhi. The results showed that the B syringe was turbid on FTM media and did not contain pathogenic microbes after being identified on selective media, as in controls. The A and C syringes on TSB media were turbid, and after identification on selective media, Candida albicans and Aspergillus brasiliensis were found. In conclusion, the A, B, and C syringes are not steril.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010058
Author(s):  
Hao Zhang ◽  
Gang Lin

Proteasomes are compartmentalized, ATP-dependent, N-terminal nucleophile hydrolases that play essentials roles in intracellular protein turnover. They are present in all 3 kingdoms. Pharmacological inhibition of proteasomes is detrimental to cell viability. Proteasome inhibitor rugs revolutionize the treatment of multiple myeloma. Proteasomes in pathogenic microbes such as Mycobacterium tuberculosis (Mtb), Plasmodium falciparum (Pf), and other parasites and worms have been validated as therapeutic targets. Starting with Mtb proteasome, efforts in developing inhibitors selective for microbial proteasomes have made great progress lately. In this review, we describe the strategies and pharmacophores that have been used in developing proteasome inhibitors with potency and selectivity that spare human proteasomes and highlight the development of clinical proteasome inhibitor candidates for treatment of leishmaniasis and Chagas disease. Finally, we discuss the future challenges and therapeutical potentials of the microbial proteasome inhibitors.


2021 ◽  
Vol 118 (49) ◽  
pp. e2110968118
Author(s):  
Nick C. Snelders ◽  
Gabriella C. Petti ◽  
Grardy C. M. van den Berg ◽  
Michael F. Seidl ◽  
Bart P. H. J. Thomma

Microbes typically secrete a plethora of molecules to promote niche colonization. Soil-dwelling microbes are well-known producers of antimicrobials that are exploited to outcompete microbial coinhabitants. Also, plant pathogenic microbes secrete a diversity of molecules into their environment for niche establishment. Upon plant colonization, microbial pathogens secrete so-called effector proteins that promote disease development. While such effectors are typically considered to exclusively act through direct host manipulation, we recently reported that the soil-borne, fungal, xylem-colonizing vascular wilt pathogen Verticillium dahliae exploits effector proteins with antibacterial properties to promote host colonization through the manipulation of beneficial host microbiota. Since fungal evolution preceded land plant evolution, we now speculate that a subset of the pathogen effectors involved in host microbiota manipulation evolved from ancient antimicrobial proteins of terrestrial fungal ancestors that served in microbial competition prior to the evolution of plant pathogenicity. Here, we show that V. dahliae has co-opted an ancient antimicrobial protein as effector, named VdAMP3, for mycobiome manipulation in planta. We show that VdAMP3 is specifically expressed to ward off fungal niche competitors during resting structure formation in senescing mesophyll tissues. Our findings indicate that effector-mediated microbiome manipulation by plant pathogenic microbes extends beyond bacteria and also concerns eukaryotic members of the plant microbiome. Finally, we demonstrate that fungal pathogens can exploit plant microbiome-manipulating effectors in a life stage–specific manner and that a subset of these effectors has evolved from ancient antimicrobial proteins of fungal ancestors that likely originally functioned in manipulation of terrestrial biota.


Sign in / Sign up

Export Citation Format

Share Document