scholarly journals Online Total Organic Carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

2017 ◽  
Author(s):  
Céline Assmann ◽  
Amanda Scott ◽  
Dondra Biller

Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters. Online Organic Carbon Monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it drives smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online TOC monitoring.

2017 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Céline Assmann ◽  
Amanda Scott ◽  
Dondra Biller

Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters – see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.


2005 ◽  
Vol 77 (7) ◽  
pp. 3074-3079 ◽  
Author(s):  
Angélica Villarruel-López ◽  
Elizabeth Fernández-Rendón ◽  
Lydia Mota-de-la-Garza ◽  
Jorge Ortigoza-Ferado

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Elorm Obotey Ezugbe ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Dennis Asante-Sackey ◽  
Gloria Amo-Duodu

Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.16 and 0.14 L/min respectively), using 70 g/L NaCl solution as the draw solution. The results obtained showed an average of 97.67% rejection of SO42− and CO32− while Cl− was found to enrich the feed solution (FS). An average removal of 88.92% was achieved for the organics. A permeation flux of 5.06 L/m2.h was obtained. The kinetics of the ions transport was studied, and was found to fit the second-order kinetic model, with Pearson’s R-values of 0.998 and 0.974 for Cl− and CO32− respectively. The study proves FO as a potential technology to desalinate saline MWW.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


Sign in / Sign up

Export Citation Format

Share Document