Signature of coseismic off-fault damage in intermediate- and far-field radiation

Author(s):  
Kurama Okubo ◽  
Harsha S. Bhat ◽  
Esteban Rougier ◽  
Marine A. Denolle

<p>Off-fault damage is observed around fault cores in a wide range of length scales, which is identified as an aggregation of localized fractures via geological and geodetic observations, or as low-velocity zone via seismological tomography. However, its seismological observables in earthquake traces, e.g. change in source spectra and/or radiation pattern, remains to be investigated. </p><p>Okubo et al. (2019) proposed an approach framework of physics-based dynamic earthquake rupture modeling with coseismic off-fault damage using the combined finite-discrete element method (FDEM). It shows a non-negligible contribution of coseismic damage to rupture dynamics, high-frequency radiation and overall energy budget, whereas the model domain is limited in the near-field region. This study efficiently computes intermediate- and far-field radiation propagating from earthquake sources with coseismic off-fault damage, and to identify its signature in the seismic traces.</p><p>We first conduct the dynamic earthquake rupture with coseismic damage and compute synthetic near-field radiation using FDEM-based software tool, HOSSedu, developed by Los Alamos National Laboratory. We then couple the output of HOSSedu to SPECFEM2D in order to compute intermediate- and far-field radiation. The HOSS-SPECFEM2D coupling can resolve complexities over wide range of length scales associated with earthquake sources with coseismic damage and wave propagation.</p><p>We conduct 2D dynamic earthquake rupture modeling with a finite planar fault as canonical simplest model. The comparison between the cases with and without allowing for coseismic off-fault damage shows differences in intermediate- and far-field radiation. 1) High-frequency components in ground motion are enhanced all around the fault. 2) The rupture arresting phase, which clearly appears at the stations located orthogonal to the fault for the case without off-fault damage, is damped due to the smoothed rupture arrest by coseismic damage around fault edges. 3) Radiated energy is enhanced in the direction parallel to the fault due to the substantial damage around fault edges.</p><p>These fundamental observables will help identify the existence of coseismic off-fault damage in real earthquakes. It would also contribute to resolve the mechanisms of earthquake sources and the potential distribution of aftershock locations. We also attempt to replace the planar fault to the real fault geometry, e.g. the fault system associated with the 2019 Ridgecrest earthquake sequence, and will investigate the signature of off-fault damage in the seismic traces recorded in intermediate- and far-field range.</p>

2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


Author(s):  
Sha Li ◽  
Yi Hua Yan ◽  
Wei Wang ◽  
Zhi Jun Chen ◽  
Dong Hao Liu ◽  
...  

AbstractIn traditional antenna design, metal components are not placed in the central part of the antenna as they change the characteristics of near field radiation. However, we show that placing a metal ring in the centre of the strip lines, which connect the ends of folded high-frequency dipoles, does not damage the performance of the feed. Instead it significantly improves the voltage standing wave ratio of the feed whilst other performance indicators are not compromised. Thus, our findings show an excellent way of improving the wide band feed. Based on this foundation, a new circularly polarised feed for operation between 0.4 to 2 GHz is introduced for the Chinese Spectral Radioheliograph in this paper. The issue of a feed impedance matching network is investigated. By optimising the impedance matching, the performance of the feed is enhanced with respect to the previous realisations of the Eleven feed. The simulation and experimental results show that the gain of the feed is about 10 dBi, and the VSWR is less than 2:1. In addition, the feed has a low axial ratio, fixed phase centre location, and constant beam width in the range of 0.4 to 2 GHz.


2013 ◽  
Vol 81 (5) ◽  
pp. 351-358 ◽  
Author(s):  
Justin Peatross ◽  
John P. Corson ◽  
Grayson Tarbox
Keyword(s):  

2016 ◽  
Vol 25 (02) ◽  
pp. 1750002 ◽  
Author(s):  
Shiquan Wang

This paper investigates the prediction of the far-field performances of high frequency projectors using the second source array method (SSAM). The far-field parameters can be calculated accurately using the complex acoustic pressure data of two very close parallel planes which lie in the near-field region of the projector. The paper simulates the feasibility of predicting the far-field parameters such as transmitting voltage response and the far-field directivity pattern. The predicting results are compared with that calculated using boundary element method (BEM). It shows very good agreement between the two methods. A planar high frequency projector is measured using the near-field method. In order to verify the predicting results, the far-field measurement is performed for the same projector. The comparison of the results shows that the near-field method is capable to precisely predict the far-field parameters of the projector.


Sign in / Sign up

Export Citation Format

Share Document