scholarly journals Methane emissions from oil and gas production sites in Alberta, Canada

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Daniel Zavala-Araiza ◽  
Scott C. Herndon ◽  
Joseph R. Roscioli ◽  
Tara I. Yacovitch ◽  
Matthew R. Johnson ◽  
...  

We performed ground-based measurements (downwind, site-wide characterization) of methane emissions from older light oil and natural gas production sites in Alberta, Canada (Red Deer region, 60 measured sites). We developed a distribution of site-based methane emissions and as previously found in production regions in the United States, a small fraction of the sites account for the majority of methane emissions: 20% of the sites emit three quarters of the methane from oil and gas production. Using empirically derived emission factors, we compared an estimate of regional methane emissions, to a top-down airborne-based measurement of the same region. The airborne measurement was 35% lower, though not statistically different (4,800 ± 3,200 vs. 3,100 ± 2,200 kg CH4 h–1). In Alberta, the majority of these oil and gas emissions go unreported under current reporting requirements. Effective mitigation will most likely require frequent monitoring to identify high-emitting sites as well as leaky components that we hypothesize are also a major contributor to emissions.

2020 ◽  
Author(s):  
Pieternel Levelt ◽  
Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
John Lin ◽  
Jochen Landgraf ◽  
...  

<p>Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. Using methane and NO<sub>2</sub> column measurements from the new TROPOMI instrument, we show that emissions from oil and gas production in the Uintah and Permian Basins can be observed in the data from individual overpasses. This is a vast improvement over measurements from previous satellite instruments, which typically needed to be averaged over a year or more to quantify trends and regional enhancements in methane emissions. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane and NO2 emissions associated with regular oil and natural gas production.</p>


2021 ◽  
Author(s):  
Itziar Irakulis-Loitxate ◽  
Luis Guanter ◽  
Yin-Nian Liu ◽  
Daniel J. Varon ◽  
Joannes D. Maasakkers ◽  
...  

<p>The Permian Basin is known for its extensive oil and gas production, which has increased rapidly in recent years becoming the largest producing basin in the United States. It is also responsible for almost half of the methane emissions from all oil and gas producing regions in the country. Given the urgent need to reduce greenhouse gas emissions, it is crucial to identify and characterize the point sources of emissions. To this end, we have combined three new high-resolution hyperspectral sensors data onboard the GF-5, ZY1 and PRIMA satellites to create the first regional study to identify methane sources and measure the emitted quantities from each source. With data collected over several days in 2019 and 2020, we have identified a total of 37 point source emissions with flux rates >500kg/h, that is, a high concentration of extreme emission point sources that account for nearly 40% of the Permian annual emissions. Also, we have found that new infrastructure (post-2018) is responsible for almost 60% of the detected emissions, in many cases (21% of the cases) due to inefficient use of flaring of the gas that they cannot store. With this study, we demonstrate that hyperspectral satellite data are a powerful tool for the detection and quantification of strong methane point emissions.</p>


2020 ◽  
Author(s):  
Dieter Franke ◽  
Andreas Bahr ◽  
Johannes Gütschow ◽  
Martin Blumenberg ◽  
Stefan Ladage ◽  
...  

<p>The worldwide operating petroleum industry is considered as one of the major contributors to global anthropogenic methane emissions. However, not only absolute numbers of methane emissions from oil and natural gas production and distribution vary greatly in different global inventories, also the relative contribution of the oil and the gas sector is under discussion. In different studies, the majority of methane emissions are assigned either to natural gas or to the oil sector. For the climate emission origins are of course irrelevant, however, for the climate budget of natural gas usage it is important to know which emissions are attributable to natural gas and what number is related to oil production with its associated natural gas.</p><p>Here we use the Federal Institute of Geosciences and Natural Resources’ (BGR) worldwide database on natural oil and gas production and consumption, dating back to 1900, and compare it to global bottom-up methane emission inventories. We will present and discuss several regression approaches that fit the global data reasonably well. In addition, methane emissions of country groups are compared to natural oil and gas production and consumption data. This study finds that the emission factors that relate to gas production released during oil and gas extraction likely vary over the time and across different production areas in the world.</p>


2018 ◽  
Vol 52 (19) ◽  
pp. 11206-11214 ◽  
Author(s):  
Pablo E. Saide ◽  
Daniel F. Steinhoff ◽  
Branko Kosovic ◽  
Jeffrey Weil ◽  
Nicole Downey ◽  
...  

2019 ◽  
Author(s):  
Yibin Weng ◽  
Ming Xue ◽  
Xiangyu Cui ◽  
Xingchun Li

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joost A. de Gouw ◽  
J. Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
Barbara Dix ◽  
John C. Lin ◽  
...  

2020 ◽  
Vol 6 (8) ◽  
pp. eaav2110
Author(s):  
Daniel Raimi

Kondash et al. provide a valuable contribution to our understanding of water consumption and wastewater production from oil and gas production using hydraulic fracturing. Unfortunately, their claim that the water intensity of energy production using hydraulic fracturing has increased in all regions is incorrect. More comprehensive data show that, while the water intensity of production may have increased in regions such as the Permian basin, it has decreased by 74% in the Marcellus and by 19% in the Eagle Ford region. This error likely stems from an improper method for estimating energy production from wells: The authors use the median well to represent regional production, which systematically underestimates aggregate production volumes. Across all regions, aggregate data suggest that the water intensity of oil and natural gas production using hydraulic fracturing has increased by 19%. There also appears to be an error in estimates for water consumption in the Permian basin.


2018 ◽  
Vol 18 (9) ◽  
pp. 6483-6491 ◽  
Author(s):  
Jian-Xiong Sheng ◽  
Daniel J. Jacob ◽  
Alexander J. Turner ◽  
Joannes D. Maasakkers ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US in August–September 2013 to estimate methane emissions in that region through an inverse analysis with up to 0.25∘×0.3125∘ (25×25 km2) resolution and with full error characterization. The Southeast US is a major source region for methane including large contributions from oil and gas production and wetlands. Our inversion uses state-of-the-art emission inventories as prior estimates, including a gridded version of the anthropogenic EPA Greenhouse Gas Inventory and the mean of the WetCHARTs ensemble for wetlands. Inversion results are independently verified by comparison with surface (NOAA∕ESRL) and column (TCCON) methane observations. Our posterior estimates for the Southeast US are 12.8±0.9 Tg a−1 for anthropogenic sources (no significant change from the gridded EPA inventory) and 9.4±0.8 Tg a−1 for wetlands (27 % decrease from the mean in the WetCHARTs ensemble). The largest source of error in the WetCHARTs wetlands ensemble is the land cover map specification of wetland areal extent. Our results support the accuracy of the EPA anthropogenic inventory on a regional scale but there are significant local discrepancies for oil and gas production fields, suggesting that emission factors are more variable than assumed in the EPA inventory.


2016 ◽  
Vol 50 (5) ◽  
pp. 2487-2497 ◽  
Author(s):  
John. D. Albertson ◽  
Tierney Harvey ◽  
Greg Foderaro ◽  
Pingping Zhu ◽  
Xiaochi Zhou ◽  
...  

Subject Cuba's energy troubles. Significance With a previously generous Venezuela facing economic crisis and the United States tightening sanctions, Cuba’s ability to augment its limited domestic oil and gas production is severely constrained. It lacks the export earnings to invest in new technologies and power generating capacity that could ease its fuel supply problems. Russia and China have spoken of offering assistance, but neither is inclined to provide handouts in the absence of commercial returns. Impacts Cuba has tried to trade more with Algeria and Angola but remains vulnerable to international oil price shifts. As a major producer of both sugar and biofuels, Brazil could provide a model for Cuba’s biofuel plans. Cubans are resilient and accustomed to hardship; the country’s looming economic troubles are unlikely to trigger serious unrest.


Sign in / Sign up

Export Citation Format

Share Document