Impact of Climate change on tropical terrestrial water use efficiency

Author(s):  
Shweta Kumari ◽  
Mark A Adams

<p>Variability in precipitation and temperature are key markers of climate change. Extreme events like heat waves, droughts, frosts, wind storms, flooding rains and fires greatly affect ecosystem and terrestrial carbon balance. Tropical regions in particular make strong contributions to the global carbon cycle and are the focus of our research. Our initial analysis confirmed the long-known pattern of large variability in rainfall in the tropical southern hemisphere (i.e. between the Tropic of Capricorn and the Equator) w.r.t. the north, with less variation in temperature between the hemispheres. In the follow-up analysis, we focus on exchanges of carbon and water and water use efficiency, based on 39 eddy covariance flux sites which represent 25 years of data across the tropics. Our working hypothesis is that long-term increases in temperature and significant changes (+/-) in rainfall will be reflected in changes in water use efficiency and cropping period, albeit with greater spatial and temporal variation in the south than in the north. We are also investigating relationships between water use efficiency of tropical regions calculated using eddy covariance flux data, with that calculated using tree ring data. We seek to combine methodologies that can help drive our understanding of the impact of climate change on water use efficiency of tropical regions.</p><p><strong><span>Keywords: </span></strong><span>Eddy covariance, Tropics, Water use efficiency, Carbon cycle, Tree ring data</span></p>

2016 ◽  
Author(s):  
Kathrin M. Keller ◽  
Sebastian Lienert ◽  
Anil Bozbiyik ◽  
Thomas F. Stocker ◽  
Olga V. Churakova ◽  
...  

Abstract. Measurements of the stable carbon isotope ratio (δ13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO2 and climate, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO2 partial pressure in the intercellular cavities and the atmosphere (ci / ca) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earth System Model and the LPX-Bern dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of seventy-six tree-ring records, mainly from Europe, boreal Asia, and western North America, suggest on average small 20th-century changes in isotopic discrimination and an increase in iWUE of about 27 % since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO2. The results suggest that the down-regulation of ci / ca and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or there may be more fundamental problems associated with the prescribed relationship between conductance and assimilation.


2019 ◽  
Vol 222 ◽  
pp. 193-203 ◽  
Author(s):  
Muhammad Adil Rashid ◽  
Mohamed Jabloun ◽  
Mathias Neumann Andersen ◽  
Xiying Zhang ◽  
Jørgen Eivind Olesen

2017 ◽  
Vol 14 (10) ◽  
pp. 2641-2673 ◽  
Author(s):  
Kathrin M. Keller ◽  
Sebastian Lienert ◽  
Anil Bozbiyik ◽  
Thomas F. Stocker ◽  
Olga V. Churakova (Sidorova) ◽  
...  

Abstract. Measurements of the stable carbon isotope ratio (δ13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO2 and climate conditions, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO2 partial pressure in the intercellular cavities and the atmosphere (ci∕ca) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earth System Model and the Land Surface Processes and Exchanges (LPX-Bern) dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of 76 tree-ring records, mainly from Europe, boreal Asia, and western North America, suggests on average small 20th century changes in isotopic discrimination and in ci∕ca and an increase in iWUE of about 27 % since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss by transpiration. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as that revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO2. The results suggest that the downregulation of ci∕ca and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or that there may be problems associated with the implementation of conductance, assimilation, and related adjustment processes on long-term environmental changes.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1218
Author(s):  
Michael A. Kock

Plant related innovations are critical to enable of food security and mitigate climate change. New breeding technologies (NBTs) based on emerging genome editing technologies like CRISPR/Cas will facilitate “breeding-by-editing” and enable complex breeding targets—like climate resilience or water use efficiency—in shorter time and at lower costs. However, NBTs will also lead to an unprecedented patent complexity. This paper discusses implications and potential solutions for open innovation models.


Sign in / Sign up

Export Citation Format

Share Document