Asymmetric impact of CP ENSO on the significant reduction of tropical cyclone genesis frequency over the WNP since the late 1990s

Author(s):  
Han-Kyoung Kim ◽  
Sang-Wook Yeh ◽  
Nam-Young Kang ◽  
Byung-Kwon Moon

<p>Tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) is reduced significantly since the late 1990s, coinciding with a Pacific decadal oscillation (PDO) phase change from positive to negative. In this study, the underlying mechanism for this reduction is investigated through analysis of asymmetric central Pacific (CP) El Niño-Southern Oscillation (ENSO) properties induced by the negative PDO phase. Results suggest that the significant reduction is caused by asymmetric CP ENSO properties, in which the CP La Niña is more frequent than the CP El Niño during negative PDO phases; furthermore, stronger CP La Niña occurs during a negative PDO phase than during a positive PDO phase. CP La Niña (El Niño) events generate an anticyclonic (cyclonic) Rossby wave response over the eastern WNP, leading to a significant decrease (increase) in eastern WNP TC genesis. Therefore, more frequent CP La Niña events and the less frequent CP El Niño events reduce the eastern WNP mean TC genesis frequency during a negative PDO phase. In addition, stronger CP La Niña events during a negative PDO phase reinforce the reduction in eastern WNP TC genesis. The dependency of CP ENSO properties on the PDO phase is confirmed using a long-term climate model simulation, which supports our observational results. </p><p>Acknowledgements: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; No. 2019R1A2C1008549).</p>

SOLA ◽  
2012 ◽  
Vol 8 (0) ◽  
pp. 137-140 ◽  
Author(s):  
Satoru Yokoi ◽  
Chiharu Takahashi ◽  
Kazuaki Yasunaga ◽  
Ryuichi Shirooka

2013 ◽  
Vol 141 (6) ◽  
pp. 1925-1942 ◽  
Author(s):  
Stephanie A. Slade ◽  
Eric D. Maloney

Abstract A real-time statistical model based on the work of Leroy and Wheeler is developed via multiple logistic regression to predict weekly tropical cyclone activity over the Atlantic and east Pacific basins. The predictors used in the model include a climatology of tropical cyclone genesis for each ocean basin, an El Niño–Southern Oscillation (ENSO) index, and two indices representing the propagating Madden–Julian oscillation (MJO). The Atlantic model also includes a predictor representing the variability of sea surface temperature (SST) in the Main Development Region (MDR). These predictors are suggested as useful for the prediction of tropical cyclogenesis based on previous work in the literature and are further confirmed in this study using basic statistics. Univariate logistic regression models are generated for each predictor in each region to ensure the choice of prediction scheme. Using all predictors, cross-validated hindcasts are developed out to a seven-week forecast lead. A formal stepwise predictor selection procedure is implemented to select the predictors used in each region at each forecast lead. Brier skill scores and reliability diagrams are used to assess the skill and dependability of the models. Results show an increase in model skill over the time-varying climatology at predicting tropical cyclogenesis by the inclusion of the MJO out to a three-week forecast lead for the east Pacific and a two-week forecast lead for the Atlantic. The importance of ENSO and MDR SST for Atlantic genesis prediction is highlighted, and the uncertain effects of ENSO on east Pacific tropical cyclogenesis are revisited.


Sign in / Sign up

Export Citation Format

Share Document