Can Teleseismic Travel-Times Constrain 3D Anisotropic Structure in Subduction Zones? Insights from Realistic Synthetic Experiments

Author(s):  
Brandon VanderBeek ◽  
Manuele Faccenda

<p>Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic tomographic images remains largely ignored. In subduction zones, unmodeled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional heterogeneities (e.g. Bezada et al., 2016). Recent studies have demonstrated the possibility of inverting P-wave delay times for the strength and orientation of seismic anisotropy assuming a hexagonal symmetry system (e.g. Huang et al., 2015; Munzarová et al., 2018). However, the ability of P-wave delay times to constrain complex anisotropic patterns, such as those expected in subduction settings, remains unclear as the aforementioned methods are tested using ideal self-consistent data (i.e. data produced using the assumptions built into the tomography algorithm) generated from simplified synthetic models. Here, we test anisotropic P-wave imaging methods on data generated from geodynamic simulations of subduction. Micromechanical models of polymineralic aggregates advected through the simulated flow field are used to create an elastic model with up to 21 independent coefficients. We then model the teleseismic wavefield through this fully anisotropic model using SPECFEM3D coupled with AxiSEM. P-wave delay times across a synthetic seismic array are measured using conventional cross-correlation techniques and inverted for isotropic velocity and the strength and orientation of anisotropy using travel-time tomography methods. We propose and validate approximate analytic finite-frequency sensitivity kernels for the simplified anisotropic parameters. Our results demonstrate that P-wave delays can reliably recover horizontal and vertical changes in the azimuth of anisotropy. However, substantial isotropic artefacts remain in the solution when only inverting for azimuthal anisotropy parameters. These isotropic artefacts are largely removed when inverting for the dip as well as the azimuth of the anisotropic symmetry axis. Due to the relative nature of P-wave delay times, these data generally fail to reconstruct anisotropic structure that is spatially uniform over large scales. To overcome this limitation, we propose a joint inversion of SKS splitting intensity with P-wave delay times. Preliminary results demonstrate that this approach improves the recovery of the magnitude and azimuth of anisotropy. We conclude that teleseismic P-wave travel-times are a useful observable for probing the 3D distribution of upper mantle anisotropy and that anisotropic inversions should be explored to better understand the nature of isotropic velocity anomalies in subduction settings.</p>

2021 ◽  
Vol 225 (3) ◽  
pp. 2097-2119
Author(s):  
Brandon P VanderBeek ◽  
Manuele Faccenda

SUMMARY Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic P-wave imaging remains largely ignored. Unmodelled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional heterogeneities. Recent studies have demonstrated the possibility of inverting P-wave delay times for the strength and orientation of seismic anisotropy. However, the ability of P-wave delay times to constrain complex anisotropic patterns, such as those expected in subduction settings, remains unclear as synthetic testing has been restricted to the recovery of simplified block-like structures using ideal self-consistent data (i.e. data produced using the assumptions built into the tomography algorithm). Here, we present a modified parametrization for imaging arbitrarily oriented hexagonal anisotropy and test the method by reconstructing geodynamic simulations of subduction. Our inversion approach allows for isotropic starting models and includes approximate analytic finite-frequency sensitivity kernels for the simplified anisotropic parameters. Synthetic seismic data are created by propagating teleseismic waves through an elastically anisotropic subduction zone model created via petrologic-thermomechanical modelling. Delay times across a synthetic seismic array are measured using conventional cross-correlation techniques. We find that our imaging algorithm is capable of resolving large-scale features in subduction zone anisotropic structure (e.g. toroidal flow pattern and dipping fabrics associated with the descending slab). Allowing for arbitrarily oriented anisotropy also results in a more accurate reconstruction of isotropic slab structure. In comparison, models created assuming isotropy or only azimuthal anisotropy contain significant isotropic and anisotropic imaging artefacts that may lead to spurious interpretations. We conclude that teleseismic P-wave traveltimes are a useful observable for probing the 3-D distribution of upper mantle anisotropy and that anisotropic inversions should be explored to better understand the nature of isotropic velocity anomalies particularly in subduction settings.


2021 ◽  
Author(s):  
Brandon VanderBeek ◽  
Miles Bodmer ◽  
Manuele Faccenda

<p>Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic P-wave imaging remains largely ignored. Unmodeled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional and thermal heterogeneities. Here, we present a new parameterization for imaging arbitrarily oriented hexagonal anisotropy using teleseismic P-wave delays. We evaluate our tomography algorithm by reconstructing geodynamic simulations of subduction that include predictions for mantle mineral fabrics. Our synthetic tests demonstrate that accounting for both the dip and azimuth of anisotropy in the inversion is critical to the accurate recovery of both isotropic and anisotropic structure. We then perform anisotropic inversions using data collected across the western United States and offshore Cascadia. Our preliminary models show a clear circular pattern in the azimuth of anisotropy around the southern edge of the Juan de Fuca slab that is remarkably similar to the toroidal flow pattern inferred from SKS splits. We also image dipping anisotropic domains coincident with the descending Juan de Fuca slab. In contrast to prior isotropic tomographic results, the Juan de Fuca slab in our anisotropic model is characterized by more uniform P-wave speeds and is without an obvious slab hole below ~150 km depth. We also find a general decrease in the magnitude of mantle low-velocity zones throughout the model relative to prior studies. These results highlight the sensitivity of teleseismic P-waves to anisotropic structure and the importance of accounting for anisotropic heterogeneity in the imaging of subduction zones.</p>


1968 ◽  
Vol 58 (6) ◽  
pp. 1879-1897
Author(s):  
K. L. Kaila ◽  
P. R. Reddy ◽  
Hari Narain

ABSTRACT P-wave travel times of 39 shallow earthquakes and three nuclear explosions with epicenters in the North in Himalayas, Tibet, China and USSR as recorded in Indian observatories have been analyzed statistically by the method of weighting observations. The travel times from Δ = 2° to 50° can be represented by four straight line segments indicating abrupt velocity changes around 19°, 22° and 33° respectively. The P-wave velocity at the top of the mantle has been found to be 8.31 ± 0.02 km/sec. Inferred upper mantle structure reveals three velocity discontinuities in the upper mantle at depths (below the crust) of 380 ± 20, 580 ± 50 and 1000 ± 120 km with velocities below the discontinuities as 9.47 ± 0.06, 10.15 ± 0.07 and 11.40 ± 0.08 km/sec respectively. The J-B residuals up to Δ = 19° are mostly negative varying from 1 to 10 seconds with a dependence on Δ values indicating a different upper mantle velocity in the Himalayan region as compared to that used by Jeffreys-Bullen in their tables (1940). Between 19° to 33° there is a reasonably good agreement between the J-B curve and the observation points. From Δ = 33° to 50° the J-B residuals are mostly positive with an average excess value of about 4 sec.


2020 ◽  
Vol 6 (28) ◽  
pp. eabb0476
Author(s):  
Jorge C. Castellanos ◽  
Jonathan Perry-Houts ◽  
Robert W. Clayton ◽  
YoungHee Kim ◽  
A. Christian Stanciu ◽  
...  

Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers.


2011 ◽  
Vol 184 (3) ◽  
pp. 1379-1396 ◽  
Author(s):  
J. P. O'Donnell ◽  
E. Daly ◽  
C. Tiberi ◽  
I. D. Bastow ◽  
B. M. O'Reilly ◽  
...  
Keyword(s):  
P Wave ◽  

1975 ◽  
Vol 65 (4) ◽  
pp. 1013-1021
Author(s):  
Antonio Bottari

Abstract In this article, P travel-time residuals for the Messina station are analyzed in order to investigate the Tyrrhenian upper mantle, which is considered to be crossed by a lithospheric slab. A first set of 24 residuals derived from deep earthquakes of the southern Tyrrhenian Sea show early arrivals of, on the average, −1.3 sec at Messina. In addition, these negative residuals are associated with initial motion of the dilatation type. On the contrary, the few deep earthquakes which produce, as first motion, a compression at the Messina station, are associated with late arrivals of about 1 sec. These results are considered and discussed in order to analyze the hypocentral mechanism and P-wave transmission through the lithospheric slab. A second and wider analysis is then extended to 206 earthquakes which have, with respect to Messina, an epicentral location in the distance range 16° to 103° and azimuthal orientation Z in the interval 180° to 380°. The first conclusion from this analysis is that the P travel times observed at Messina for epicentral distances in the range 20° to 103° and 245° ≦ Z ≦ 380° are generally 0.5 to 3 sec less than those given in the Jeffreys-Bullen tables. Finally, a further improvement on the foregoing result has been obtained. This gives further confirmation of the consistency of regional variations of the P travel times with a slab model for the Tyrrhenian deep structures. As a matter of fact, the comparison between the travel times of Messina and a standard provided by observations in the stations of Rome and Trieste confirms early arrivals of about 1 sec on the seismic paths which cross the upper mantle in the southern Tyrrhenian region.


2020 ◽  
Author(s):  
Silvia Pondrelli ◽  
Simone Salimbeni ◽  
Manuele Faccenda

<p>A general review on measurements of upper mantle seismic anisotropy in the Alpine and Apennines region is now encouraged by the large amount of data produced by several projects (i.e AlpArray, Cifalps1). Geodynamic studies need to have a sketch of mantle flows that drives the evolution of a<br>tectonically active region. This is particularly important for the Italian peninsula, where several slabs have been involved in the Alps and Apennines building and where they are still interacts with the Adriatic plate. Draw mantle flows starting from seismic anisotropy requires to locate the source of what SKS phases detect. The answer, often undetermined, it is frequently hypothesized cross-checking different seismological observation. Overlapping SKS data with tomographic models in this region gives little help, because of the large differences in the shape, depth and dimension of fast bodies identified by different tomographic studies. Mapping and comparing SKSs data with other types of anisotropy measurements (Pn anisotropy, azimuthal anisotropy from surface waves tomography, crustal anisotropy) allow to discretise where fast anisotropy direction is much more probably astenospheric or where it pervades also regions at shallower depths.</p>


2020 ◽  
Author(s):  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

<p>We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 347 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.</p><p>For predicting P-wave travel times, we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. Outside this box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method. We invert differences between observed and predicted travel times for P-wave velocities inside the box. Velocity is discretized on a regular grid with an average spacing of about 25 km. The misfit reduction reaches values of up to 75% depending on damping and smoothing parameters.</p><p>The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies extending down to a depth of 300 km are located below the central and eastern Alps, separated by a clear gap below the western part of the Tauern window. Further to the east the model indicates a possible high-velocity connection between the eastern Alps and the Dinarides. Regarding the lateral position of the central and eastern Alpine slabs, our results confirm previous studies. However, there are differences regarding depth extent, dip angles and dip directions. Both structures dip very steeply with a tendency towards northward dipping. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.</p>


Sign in / Sign up

Export Citation Format

Share Document