southern tyrrhenian sea
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 5)

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Giovanni Chimienti ◽  
Ricardo Aguilar ◽  
Michela Maiorca ◽  
Francesco Mastrototaro

Coral forests are vulnerable marine ecosystems formed by arborescent corals (e.g., Anthozoa of the orders Alcyonacea and Antipatharia). The population structure of the habitat-forming corals can inform on the status of the habitat, representing an essential aspect to monitor. Most Mediterranean corals live in the mesophotic and aphotic zones, and their population structures can be assessed by analyzing images collected by underwater vehicles. This is still not possible in whip-like corals, whose colony lengths and flexibilities impede the taking of direct length measurements from images. This study reports on the occurrence of a monospecific forest, of the whip coral Viminella flagellum in the Aeolian Archipelago (Southern Tyrrhenian Sea; 149 m depth), and the assessment of its population structure through an ad-hoc, non-invasive method to estimate a colony height based on its width. The forest of V. flagellum showed a mean density of 19.4 ± 0.2 colonies m−2 (up to 44.8 colonies m−2) and no signs of anthropogenic impacts. The population was dominated by young colonies, with the presence of large adults and active recruitment. The new model proved to be effective for non-invasive monitoring of this near threatened species, representing a needed step towards appropriate conservation actions.


2021 ◽  
Vol 64 (5) ◽  
pp. VO545
Author(s):  
Andrea Di Renzoni ◽  
Sara Tiziana Levi ◽  
Alberto Renzulli ◽  
Mauro Rosi ◽  
David Yoon

T   The paper addresses the long-lasting human presence on the island of Stromboli, an active volcano at the northern edge of the Aeolian archipelago, in the Southern Tyrrhenian sea, Italy. A conceptual model has been built to explore the phenomenon, it takes into account a series of aspects comparing Stromboli to other islands: their morphology, natural resources and geography along with the archaeological and historical data and, further, human attitude to volcanic environments, to risk and to insularity has been deeply explored. We propose a complex narrative where a combination of geological, socio-economic, historical, and psychological factors influenced people’s choices and that human presence is related more to the volcanic (and island) environment (and opportunities) than to volcanic activity.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 504
Author(s):  
Luca Cocchi ◽  
Fabio Caratori Tontini ◽  
Filippo Muccini ◽  
Cornel E. J. de Ronde

Volcanism is the most widespread expression of cyclic processes of formation and/or destruction that shape the Earth’s surface. Calderas are morphological depressions resulting from the collapse of a magma chamber following large eruptions and are commonly found in subduction-related tectono-magmatic regimes, such as arc and back-arc settings. Some of the most impressive examples of seafloor hydrothermal venting occur within submarine calderas. Here, we show the results of magnetic investigations at two hydrothermally active submarine calderas, i.e., Palinuro Seamount in the Southern Tyrrhenian Sea, Italy, and Brothers volcano of the Kermadec arc, New Zealand. These volcanoes occur in different geodynamic settings but show similarities in the development of their hydrothermal systems, both of which are hosted within calderas. We present a new integrated model based on morphological, geological and magnetic data for the Palinuro caldera, and we compare this with the well-established model of Brothers caldera, highlighting the differences and common features in the geophysical expressions of both hydrothermal systems. For consistency with the results at Brothers volcano, we build a model of demagnetised areas associated with hydrothermal alteration derived from 3D inversion of magnetic data. Both these models for Brothers and Palinuro show that hydrothermal up-flow zones are strongly controlled by caldera structures which provide large-scale permeability pathways, favouring circulation of the hydrothermal fluids at depth.


2021 ◽  
pp. 127669
Author(s):  
Teresa Bottari ◽  
Monique Mancuso ◽  
Cristina Pedà ◽  
Francesca De Domenico ◽  
Federica Laface ◽  
...  

2021 ◽  
Vol 140 (3) ◽  
pp. 1-11
Author(s):  
Assel Akimbekova ◽  
Paolo Mancinelli ◽  
Manuel Pozo ◽  
Cristina Pauselli ◽  
Giorgio Minelli ◽  
...  

2021 ◽  
Vol 9 (9) ◽  
pp. 967
Author(s):  
Claudio D’Iglio ◽  
Marco Albano ◽  
Francesco Tiralongo ◽  
Sergio Famulari ◽  
Paola Rinelli ◽  
...  

Data on the biology and ecology of Galeus melastomus are old/absent for the Southern Tyrrhenian Sea, despite there being numerous studies in the wider area. A total of 127 specimens of G. melastomus from the southern Tyrrhenian Sea, collected in 2018–2019 using trawling nets, were analyzed to investigate size at sexual maturity, sex ratio, length–weight relationships, and feeding habits. To our best knowledge, this is the first time in which all these features were investigated in the Southern Tyrrhenian Sea for G. melastomus. The stomach content analysis showed that G. melastomus had intermediate feeding habits, preying on a great variety of species, especially Cephalopoda, Osteichthyes, and Crustacea. The Levin’s index value (Bi) was 0.53. Sex ratio was 0.92:1, with females slightly more abundant and bigger than males. The results also showed a decrease (33.7 cm for females, 31.1 cm for males) in length at 50% maturity (L50). This could be a result of anthropogenic stressors, such as overfishing and/or and environmental changes, which can induce physiological responses in several species. Our results highlighted the differences related to sexual maturity, growth, and feeding habits of the blackmouth catshark in the studied area, providing reference data to allow comparison with future studies on this species adaptations to this and other deep-sea areas in the Mediterranean Sea.


2021 ◽  
Vol 13 (11) ◽  
pp. 2043
Author(s):  
Daniele Casalbore ◽  
Federico Di Traglia ◽  
Alessandro Bosman ◽  
Claudia Romagnoli ◽  
Nicola Casagli ◽  
...  

Stromboli is an active insular volcano located in the Southern Tyrrhenian Sea and its recent volcanic activity is mostly confined within the Sciara del Fuoco (SdF, hereafter), a 2-km wide subaerial–submarine collapse scar, which morphologically dominates the NW flank of the edifice. In August-November 2014, an effusive eruption occurred along the steep SdF slope, with multiple lava flows reaching the sea. The integration of multisensor remote sensing data, including lidar, photogrammetric, bathymetric surveys coupled with SAR amplitude images collected before and after the 2014 eruption enabled to reconstruct the dynamics of the lava flows through the main morphological changes of the whole SdF slope. Well-defined and steep-sided ridges were created by lava flows during the early stages of the eruption, when effusion rates were high, favoring the penetration into the sea of lava flows as coherent bodies. Differently, fan-shaped features were emplaced during the declining stage of the eruption or in relation to lava overflows and associated gravel flows, suggesting the prevalence of volcaniclastic breccias with respect to coherent lava flows. The estimated volume of eruptive products emplaced on the SdF slope during the 2014 eruption, accounts for about 3.7 × 106 m3, 18% of which is in the submarine setting. This figure is different with respect to the previous 2007 eruption at Stromboli, when a large lava submarine delta formed. This discrepancy can be mainly related to the different elevation of the main vents feeding lava flows during the 2007 eruption (around 400 m) and the 2014 eruption (around 650 m). Besides slope accretion, instability processes were detected both in the subaerial and submarine SdF slope. Submarine slope failure mobilized at least 6 × 105 m3 of volcaniclastic material, representing the largest instability event detected since the 2007 lava delta emplacement.


2021 ◽  
Vol 9 (4) ◽  
pp. 769
Author(s):  
Michael Tangherlini ◽  
Cinzia Corinaldesi ◽  
Francesca Ape ◽  
Silvestro Greco ◽  
Teresa Romeo ◽  
...  

Acidified marine systems represent “natural laboratories”, which provide opportunities to investigate the impacts of ocean acidification on different living components, including microbes. Here, we compared the benthic microbial response in four naturally acidified sites within the Southern Tyrrhenian Sea characterized by different acidification sources (i.e., CO2 emissions at Ischia, mixed gases at Panarea and Basiluzzo and acidified freshwater from karst rocks at Presidiana) and pH values. We investigated prokaryotic abundance, activity and biodiversity, viral abundance and prokaryotic infections, along with the biochemical composition of the sediment organic matter. We found that, despite differences in local environmental dynamics, viral life strategies change in acidified conditions from mainly lytic to temperate lifestyles (e.g., chronic infection), also resulting in a lowered impact on prokaryotic communities, which shift towards (chemo)autotrophic assemblages, with lower organic matter consumption. Taken together, these results suggest that ocean acidification exerts a deep control on microbial benthic assemblages, with important feedbacks on ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document