Monitoring volcanic and seismic activity with multiple fibre-optic Distributed Acoustic Sensing units at Etna volcano

Author(s):  
Charlotte Krawczyk ◽  
Philippe Jousset ◽  
Gilda Currenti ◽  
Michael Weber ◽  
Rosalba Napoli ◽  
...  

<p>Volcanic and seismic activities produce a variety of phenomena that put population at risk. Etna volcano provides an example where volcanic and tectonic processes are strongly coupled. Distributed Acoustic Sensing (DAS) technology has been for the first time tested both in 2018 and 2019 as a new tool for monitoring the complex tectonic and volcanic interactions at Etna volcano from summit to the sea floor. We connected up to 3 iDAS interrogators, sometimes simultaneously, to optical cables close to the summit, in urban areas and offshore. Each iDAS measured the dynamic strain rate along the whole length of the optical fibre, from the interferometric analysis of the back-scattered light.</p><p>In the summit area, we connect an iDAS interrogator inside the Volcanological Observatory of Pizzi Deneri (2800 m elevation close to Etna summit) to record dynamic strain signals along a 1.5 km-long fibre optic cable that we deployed in the scoria of Piano delle Concazze. We recorded signals associated with various volcanic events, local and distant earthquakes, thunderstorm, as well as many other anthropogenic signals (e.g., tourists). To validate the DAS signal we collocated along the fibre cable multi-parametric arrays (comprising geophones, broadband seismometers, infrasonic arrays). During the survey periods, Etna activity was mainly characterized by moderate but frequent explosive and/or effusive activity from summit craters. Our observations suggests that DAS technology can record volcano-related signals (in the order of tens nanostrain) with unprecedented spatial and temporal resolutions, opening new opportunities for the understanding of volcano processes.</p><p>In urban environments, taking advantage of the existence of fibre optic telecommunication infrastructures, we connected iDAS interrogator to fibre optic cables, known to cross active faults linked to the volcano eastern flank dynamics. We recorded dynamic strain rate along a 4 km cable for about 20 days in Zafferana village and along a 12 km-long cable running from Linera to Fleri. We also tested DAS recording along a 40 km-long fiber optic telecommunication cable on the western side of the volcano, at the border between the sedimentary layer and the volcano edifice.</p><p>On the sea floor, we connected an iDAS interrogator to a 30-km long fibre within a cable transmitting data from sub-marine instrumentation to INFN-LNS facility at the Catania harbour. We record dynamic strain signals from local and regional earthquakes and detect some previously unknown faults offsetting the sea floor below the eastern flank of the volcano.</p><p>Our results demonstrate that DAS technology is able to contribute to the monitoring system of earthquake and volcanic phenomena at Etna volcano, and thereby could improve the volcanic and seismic hazard assessment in the future.</p>

2020 ◽  
Author(s):  
Gilda Currenti ◽  
Philippe Jousset ◽  
Athena Chalari ◽  
Luciano Zuccarello ◽  
Rosalba Napoli ◽  
...  

<p>We explore a unique dataset collected by Distributed Acoustic Sensing (DAS) technology at the summit of Etna volcano in September 2018. We set-up an iDAS interrogator (Silixa) inside the Observatory Pizzi Deneri to record strain rate signals along a 1.3 km-long fibre optic cable deployed in Piano delle Concazze. This area is affected by several North-South trending faults and fractures, that are originated to accommodate the extension of the nearby North-East Rift zone, where magmatic intrusions often occur. The field evidence of the segments of these faults and fractures is hidden by lava flows and volcano-clastic deposits (e.g. scoria and lapilli) produced by the effusive and explosive activity of Etna volcano.</p><p>We propose a new technological and methodological framework to validate, identify and characterize volcano-related dynamic strain changes at an unprecedented high spatial (2 m) and temporal (1 kHz) sampling over a broad frequency range. The DAS record analysis and the validation of the iDAS response is performed through comparisons with measurements from a dense network of conventional sensors (comprising 5 broadband seismometers, 15 short-period geophone and two arrays of 3 infrasound sensors) deployed along  the fibre optic cable.  Comparisons between iDAS signals and dynamic strain changes estimated from the broadband seismic array shows an excellent agreement, thus demonstrating for the first time the capability of DAS technology in sensing seismic waves generated by volcanic events.</p><p>The frequent and diverse Etna activity during the acquisition period (30 August - 16 September 2018) offers the great opportunity to record a wide variety of signals and, hence, to test the response of iDAS to several volcanic processes (e.g. volcanic tremor, explosions, strombolian activity, local seismic events). Here, we focus the analysis on the signals recorded during a small explosive event on 5 September 2018 from the New South-East Crater (NSEC). This explosive event generated both seismic waves (recorded by the seismometers) propagating in the ground, and acoustic pressure signals (recorded by the infra-sound arrays) propagating in the atmosphere. We show that the DAS records catch both, as confirmed by the conventional sensors records.</p><p>Spectrogram analyses of the DAS signals reveal that the frequency content is confined in two distinctive frequency bands in the ranges 0.5-10 Hz and 18-25 Hz, for the seismic and acoustic wave, respectively. The amplitude and frequency response of the ground to the arrival and propagation of the seismo-acoustic wave along the fibre reveal spatial characteristic patterns that reflect local geological structures. For example, the finer spatial sampling of the iDAS records allows catching details of the variability of dynamic strain amplitudes along the fibre. Amplified signals are found at localized narrow regions matching fracture zones and faults. There, a decrease in the propagation velocity of the seismo-acoustic waves is also clearly pinpointed. </p><p>These preliminary findings demonstrate the DAS potentiality to revolutionize the study of volcanic process by discovering new signal features undetectable with traditional sensors and methodologies.</p>


2021 ◽  
Author(s):  
Andreas Fichtner ◽  
Pascal Edme ◽  
Patrick Paitz ◽  
Nadja Lindner ◽  
Michael Hohl ◽  
...  

<p><span>Avalanche research requires comprehensive measurements of sudden and rapid snow mass movement that is hard to predict. Automatic cameras, radar and infrasound sensors provide valuable observations of avalanche structure and dynamic parameters, such as velocity. Recently, seismic sensors have also gained popularity, because they can monitor avalanche activity over larger spatial scales. Moreover, seismic signals elucidate rheological properties, which can be used to distinguish different types of avalanches and flow regimes. To date, however, seismic instrumentation in avalanche terrain is sparse. This limits the spatial resolution of avalanche details, needed to characterise flow regimes and maximise detection accuracy for avalanche warning.</span></p><p><span>As an alternative to conventional seismic instrumentation, we propose Distributed Acoustic Sensing (DAS) to measure avalanche-induced ground motion. DAS is based on fibre-optic technology, which has previously been used already for environmental monitoring, e.g., of snow avalanches. Thanks to recent technological advances, modern DAS interrogators allow us to measure dynamic strain along a fibre-optic cable with unprecedented temporal and spatial resolution. It therefore becomes possible to record seismic signals along many kilometres of fibre-optic cables, with a spatial resolution of a few metres, thereby creating large arrays of seismic receivers. We test this approach at an avalanche test site in the Valleé de la Sionne, in the Swiss Alps, using an existing 700 m long fibre-optic cable that is permanently installed underground for the purpose of data transfer of other, independent avalanche measurements.</span></p><p><span>During winter 2020/2021, we recorded numerous snow avalanches, including several which reached the valley bottom, travelling directly over the cable during runout. The DAS recordings show clear seismic signatures revealing individual flow surges and various phases/modes that may be associated with roll waves and avalanche arrest. We compare our observations to state-of-the-art radar and seismic measurements which ideally complement the DAS data.</span></p><p><span>Our initial analysis highlights the suitability of DAS-based monitoring and research for avalanches and other hazardous granular flows. Moreover, the clear detectability of avalanche signals using existing fibre-optic infrastructure of telecommunication networks opens the opportunity for unrivalled warning capabilities in Alpine environments.</span></p>


2020 ◽  
Author(s):  
Rosalba Napoli ◽  
Gilda Currenti ◽  
Athena Chalari ◽  
Camille Jestin ◽  
Danilo Contrafatto ◽  
...  

<p>We present the use of distributed acoustic sensing of telecommunication fibre to perform seismic monitoring on the lower eastern flank of Etna volcano. Eastern flank of Etna is structurally characterized by the existence of many faults until under the sea. One of the clearest morphological feature is the Timpe Fault System (TFS) crossing highly populated urban areas. The TFS is formed by several main segments producing shallow seismicity with a dominant normal faulting style and a right-lateral component, related to WNW-ESE regional extension. This area is highly seismogenic, with occurrence of a very frequent seismic activity punctuated by destructive earthquakes with magnitude ranges 4.3≤ML≤5.1 and a mean recurrence time of about 20 years.</p><p>To monitor the seismic response of this area we deployed an “intelligent” Distributed Acoustic Sensing (iDAS) system (SILIXA) in order to interrogate a 12-km-long telecommunication fibre-optic cable, managed by TELECOM Italia internet provider. The telecom cable runs from Linera to Zafferana villages along two primary directions roughly N-S and E-W and crosses the Santa Venerina and the Fiandaca faults, both part of the TFS. The former was entirely hidden until the 2002 eruption when a ML 4.4 earthquake exposed the fault at the surface and heavily damaged Santa Venerina village. The latter has been reactivated during the 2018 Etna activity, when a ML4.8 earthquake strongly damaged the Fleri village.</p><p>The iDAS was in acquisition for three months (11 September - 9 December 2019) and recorded the strain rate from natural and anthropogenic sources at a sampling frequency of 1 kHz with 2-m spatial resolution and a gauge length of 10 m. A second fibre in the same cable, was interrogated simultaneously by a FEBUS A1 system (FEBUS OPTICS) from 2 to 9 December 2019 with a spatial resolution and a gauge length of 5 m at a sampling frequency of 200 Hz. To validate the DAS measurements, gathered by both systems, two broadband seismometers (Trillium Compact 120 s) were deployed in the vicinity of the cable. We located using hammer shots along the cable at key positions.</p><p>During the acquisition period more than 800 local seismic events occurred on Etna with ML ranging between 0.4 and 3.4. Several regional earthquakes from Greece and Albania also occurred up to ML6.1. These seismic sources allows for investigating the response of the fibre and the detectability thresholds of iDAS and FEBUS A1 in urban areas with heterogeneous installation conditions of the telecommunication cable (cased conduit, attached conduit, aerial track).  We perform data analysis to characterize DAS amplitude and frequency responses to better estimate the coupling of the fibre to the ground.</p>


2020 ◽  
Author(s):  
Camilla Rasmussen ◽  
Peter H. Voss ◽  
Trine Dahl-Jensen

<p>On September 16th 2018 a Danish earthquake of local magnitude 3.7 was recorded by distributed acoustic sensing (DAS) in a ~23 km long fibre-optic cable. The data are used to study how well DAS can be used as a supplement to conventional seismological data in earthquake localisation. One of the goals in this study is extracting a small subset of traces with clear P and S phases to use in an earthquake localisation, from the 11144 traces the DAS system provide. The timing in the DAS data might not be reliable, and therefore differences in arrival times of S and P are used instead of the exact arrival times. <br>The DAS data set is generally noisy and with a low signal-to-noise ratio (SNR). It is examined whether stacking can be used to improve SNR. The SNR varies a lot along the fibre-optic cable, and at some distances, it is so small that the traces are useless. Stacking methods for improving SNR are presented.</p><p>A field test at two location sites of the fibre-optic cable was conducted with the purpose of comparing DAS data with seismometer data. At the field sites, hammer shots were recorded by a small array of three STS-2 sensors located in a line parallel to the fibre-optic cable. The recordings generally show good consistency between the two data sets. <br>In addition, the field tests are used to get a better understanding of the noise sources in the DAS recording of the earthquake. There are many sources of noise in the data set. The most prominent are a line of windmills that cross the fibre-optic cable and people walking in the building where the detector is located. Also, the coupling between the fibre-optic cable and the ground varies along the cable length due to varying soil type and wrapping around the fibre-optic cable, which is also evident in field test data. Furthermore, the data from the field tests are used to calibrate the location of the fibre-optic cable, which is necessary for using the DAS data in an earthquake localisation. <br>Data processing is done in Matlab and SEISAN.</p>


2021 ◽  
Author(s):  
Brian Kennett

Distributed acoustic sensing (DAS) exploiting fibre optic cables provides a means for high-density sampling of the seismic wavefield. The scattered returns from multiple laser pulses provide local averages of strain rate over a finite gauge length, and the nature of the signal depends on the orientation of the cable with respect to the passing seismic waves. The properties of the wavefield in the slowness-frequency domain help to provide understanding of the nature of DAS recordings. For local events the dominant part of the strain rate can be extracted from the difference of ground velocity resolved along the fibre at the ends of the gauge interval, with an additional contribution just near the source. For more distant events the response at seismic frequencies can be represented as the acceleration along the fibre modulated by the horizontal slowness resolved in the same direction, which means there is a strong dependence on cable orientation. These representations of the wavefield provide insight into the character of the DAS wavefield in a range of situations from a local jump source, through a regional earthquake to teleseismic recording with different cable configurations and geographic locations. The slowness domain representation of the DAS signal allows analysis of the array response of cable configurations indicating the important role of the slowness weighting associated with the effect of gauge length. Unlike seismometer arrays the response is not described by a single generic stacking function. For high frequency waves, direct stacking enhances P, SV waves and Rayleigh waves; an azimuthal weighted stack provides retrieval of SH and Love waves at the cost of enhanced sidelobes in the array response.


2021 ◽  
Author(s):  
Pascal Edme ◽  
Patrick Paitz ◽  
David Sollberger ◽  
Tjeerd Kiers ◽  
Vincent Perron ◽  
...  

<p>Distributed Acoustic Sensing (DAS) is becoming an established tool for seismological and geophysical applications. DAS is based on Rayleigh scattering of light pulses conveyed in fibre optic cables, enabling unprecedented strain rate measurements over kilometers with spatial resolution of less than a meter. The low cost, logistically easy deployment, and the broadband sensitivity make it a very attractive technology to investigate an increasing number of man-made or natural phenomena.</p><p>One key restriction however is that DAS collects axial strain rate instead of the vector of ground motion, resulting in a poor sensitivity to broadside events like (at the surface) vertically incident waves or surface waves impinging perpendicular to the cable. Helically wound cables partially mitigate the issue but still do not provide omni-directional response as the typical vertical component of seismometers or geophones.</p><p>The present study is about the potential of using unconventional DAS cable layouts to replace and/or complement traditional sensors. We investigate the possibility of estimating the divergence and the vertical rotational components of the wavefield from cables deployed in a square or circular shape. The impact of the size of the arrangement as well as that of the interrogation gauge length is discussed.  Real data are shown and the results suggest that DAS has the potential to offer additional seismic component(s) useful for wave type identification and separation for example.</p>


2021 ◽  
Author(s):  
Martijn van den Ende ◽  
Itzhak Lior ◽  
Jean Paul Ampuero ◽  
Anthony Sladen ◽  
Cédric Richard

<p>Fibre-optic Distributed Acoustic Sensing (DAS) is an emerging technology for vibration measurements with numerous applications in seismic signal analysis as well as in monitoring of urban and marine environments, including microseismicity detection, ambient noise tomography, traffic density monitoring, and maritime vessel tracking. A major advantage of DAS is its ability to turn fibre-optic cables into large and dense seismic arrays. As a cornerstone of seismic array analysis, beamforming relies on the relative arrival times of coherent signals along the optical fibre array to estimate the direction-of-arrival of the signals, and can hence be used to locate earthquakes as well as moving acoustic sources (e.g. maritime vessels). Naturally, this technique can only be applied to signals that are sufficiently coherent in space and time, and so beamforming benefits from signal processing methods that enhance the signal-to-noise ratio of the spatio-temporally coherent signal components. DAS measurements often suffer from waveform incoherence, and processing submarine DAS data is particularly challenging.</p><p>In this work, we adopt a self-supervised deep learning algorithm to extract locally-coherent signal components. Owing to the similarity of coherent signals along a DAS system, one can predict the coherent part of the signal at a given channel based on the signals recorded at other channels, referred to as "J-invariance". Following the recent approach proposed by Batson & Royer (2019), we leverage the J-invariant property of earthquake signals recorded by a submarine fibre-optic cable. A U-net auto-encoder is trained to reconstruct the earthquake waveforms recorded at one channel based on the waveforms recorded at neighbouring channels. Repeating this procedure for every measurement location along the cable yields a J-invariant reconstruction of the dataset that maximises the local coherence of the data. When we apply standard beamforming techniques to the output of the deep learning model, we indeed obtain higher-fidelity estimates of the direction-of-arrival of the seismic waves, and spurious solutions resulting from a lack of waveform coherence and local seismic scattering are suppressed.</p><p>While the present application focuses on earthquake signals, the deep learning method is completely general, self-supervised, and directly applicable to other DAS-recorded signals. This approach facilitates the analysis of signals with low signal-to-noise ratio that are spatio-temporally coherent, and can work in tandem with existing time-series analysis techniques.</p><p>References:<br>Batson J., Royer L. (2019), "Noise2Self: Blind Denoising by Self-Supervision", Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, California</p>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1975 ◽  
Author(s):  
Matthew W. Becker ◽  
Thomas I. Coleman

The solid Earth strains in response to the gravitational pull from the Moon, Sun, and other planetary bodies. Measuring the flexure of geologic material in response to these Earth tides provides information about the geomechanical properties of rock and sediment. Such measurements are particularly useful for understanding dilation of faults and fractures in competent rock. A new approach to measuring earth tides using fiber optic distributed acoustic sensing (DAS) is presented here. DAS was originally designed to record acoustic vibration through the measurement of dynamic strain on a fiber optic cable. Here, laboratory experiments demonstrate that oscillating strain can be measured with DAS in the microHertz frequency range, corresponding to half-day (M2) lunar tidal cycles. Although the magnitude of strain measured in the laboratory is larger than what would be expected due to earth tides, a clear signal at half-day period was extracted from the data. With the increased signal-to-noise expected from quiet field applications and improvements to DAS using engineered fiber, earth tides could potentially be measured in deep boreholes with DAS. Because of the distributed nature of the sensor (0.25 m measurement interval over kilometres), fractures could be simultaneously located and evaluated. Such measurements would provide valuable information regarding the placement and stiffness of open fractures in bedrock. Characterization of bedrock fractures is an important goal for multiple subsurface operations such as petroleum extraction, geothermal energy recovery, and geologic carbon sequestration.


Sign in / Sign up

Export Citation Format

Share Document