Retrieval of reflectivity images from ambient seismic noise correlations using machine learning as a noise-panel classification tool

Author(s):  
Boris Boullenger ◽  
Merijn de Bakker ◽  
Arie Verdel ◽  
Stefan Carpentier

<p>The theory of ambient seismic noise interferometry offers techniques to retrieve estimates of inter-receiver responses from continuously recorded ambient seismic noise. This is usually achieved by correlating and stacking successive noise panels over sufficiently long periods of time. If the noise panels contain significant body-wave energy, the stacked correlations expected to result in retrieved estimates of the body-wave responses, including reflections. Such application combined with a dense surface seismic array is promising for imaging the subsurface structures at lower cost and lower environmental impact as compared to with controlled seismic sources. Subsequently, this technique can be an alternative to active-source surveys in a range of challenging scenarios and locations, and can also be used to perform time-lapse subsurface characterization.</p><p>In this study, we apply seismic body-wave noise interferometry to 30-days of continuous records from a surface line of 31 receivers spaced by 25 meters in the South of the Netherlands with the aim to image subsurface reflectors, at depths from a few hundreds of meters to a few kilometers. As a first step, we compute stacked auto-correlations and compare the retrieved zero-offset section with a co-located stacked section from a past active reflection survey on the site.</p><p>Yet, the retrieval of reflectivity estimates relies on the identification and collection of a sufficient number of noise panels with recorded body waves that have travelled from the subsurface towards the array. Even in the case of favorable body-wave noise conditions, the panels are most often contaminated with stronger anthropogenic coherent seismic noise, mainly in the form of surface waves, which in turn prevents the stacked correlations to reveal reflectivity. Because of the limited effect of frequency filtering, the application of seismic body-wave noise interferometry requires in fact extensive effort to identify noise panels without prominent coherent noise from the surface activity. Typically, this leads to disregard a significant amount of actually useful data.</p><p>For this reason, we designed, trained and tested a deep convolutional neural network to perform this classification task more efficiently and facilitate the repetition of the retrieval method over long periods of time. We tested several supervised learning schemes to classify the panels, where two classes are defined, according to the presence or absence of prominent coherent noise. The retained classification models achieved close to 90% of prediction accuracy on the test set.</p><p>We used the trained classification models to correlate and stack panels which were predicted in the class with coherent noise absent. The resulting stacked correlations exhibit potential reflectors in a larger depth range than previously achieved. The results show the benefits of using machine learning to collect efficiently a maximum amount of favorable noise panels and a way forward to the upscaling of seismic body-wave noise interferometry for reflectivity imaging.</p>

Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. F1-F8
Author(s):  
Eileen R. Martin

Geoscientists and engineers are increasingly using denser arrays for continuous seismic monitoring, and they often turn to ambient seismic noise interferometry for low-cost near-surface imaging. Although ambient noise interferometry greatly reduces acquisition costs, the computational cost of pair-wise comparisons between all sensors can be prohibitively slow or expensive for applications in engineering and environmental geophysics. Double beamforming of noise correlation functions is a powerful technique to extract body waves from ambient noise, but it is typically performed via pair-wise comparisons between all sensors in two dense array patches (scaling as the product of the number of sensors in one patch with the number of sensors in the other patch). By rearranging the operations involved in the double beamforming transform, I have developed a new algorithm that scales as the sum of the number of sensors in two array patches. Compared to traditional double beamforming of noise correlation functions, the new method is more scalable, easily parallelized, and it does not require raw data to be exchanged between dense array patches.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. KS13-KS31 ◽  
Author(s):  
Alexander Goertz ◽  
Barbara Schechinger ◽  
Benjamin Witten ◽  
Matthias Koerbe ◽  
Paul Krajewski

We analyzed ambient seismic noise from a broadband passive seismic survey acquired in an urban area in Germany. Despite a high level of anthropogenic noise, we observe lateral variations in the quasi-stationary spectra that are of natural origin and indicative of the subsurface in the survey area. The best diagnostic is the ellipticity spectrum which is the spectral ratio of the vertical over the horizontal components. Deviations of the observed spectra from a pure Rayleigh-wave ellipticity allow an approximate separation of surface-wave from body-wave components in the analyzed frequency range, distinguishing shallow (upper tens of meters) from deeper (upper three kilometers) subsurface effects. We observe an increase of vertically polarized body waves between 1 and 4 Hz that is correlated to a subsurface structure that contains an oil reservoir at about 2-km depth. We located the source of the observed body wave microtremor in depth by applying an elastic wavefield back projection and imaging technique. The method includes normalization by the impulse response of the velocity model, effects of the receiver geometry, and lateral variation of incoherent noise. The source region of the low-frequency body wave microtremor is centered above the location of the oil reservoir. Two possible explanations for the deep microtremor are elastic body-wave scattering due to the impedance contrast of the structural trap, and viscoelastic scattering due to poroelastic effects in the partially saturated reservoir.


2020 ◽  
Author(s):  
Velimir Ilić ◽  
Alessandro Bertolini ◽  
Fabio Bonsignorio ◽  
Dario Jozinović ◽  
Tomasz Bulik ◽  
...  

<p>The analysis of low-frequency gravitational waves (GW) data is a crucial mission of GW science and the performance of Earth-based GW detectors is largely influenced by ability of combating the low-frequency ambient seismic noise and other seismic influences. This tasks require multidisciplinary research in the fields of seismic sensing, signal processing, robotics, machine learning and mathematical modeling.<br><br>In practice, this kind of research is conducted by large teams of researchers with different expertise, so that project management emerges as an important real life challenge in the projects for acquisition, processing and interpretation of seismic data from GW detector site. A prominent example that successfully deals with this aspect could be observed in the COST Action G2Net (CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning) and its seismic research group, which counts more than 30 members. </p><div>In this talk we will review the structure of the group, present the goals and recent activities of the group, and present new methods for combating the seismic influences at GW detector site that will be developed and applied within this collaboration.</div><div> <p> </p> <p>This publication is based upon work from CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning, supported by COST (European Cooperation in Science and Technology).</p> </div>


2020 ◽  
Author(s):  
Wei-An Chao ◽  
Chun-Hung Lin ◽  
Che-Ming Yang ◽  
Keng-Hao Kang ◽  
Yu-Ting Kuo ◽  
...  

<p>Deep-seated landslide is one of most catastrophic and disastrous geohazards. Probing the spatial extent and basal sliding interface of the deep-seated landslide is not only particularly critical for understanding landslide size (i.e., volume and collapsed area), but also crucial for landslide hazard assessment. The conventional investigations such as the borehole drilling and seismic profiles are usually challenging for investigating landslide body comprehensively in space due to the expensive cost and the limitations of geophysical exploration. Recent studies of ambient seismic noise monitoring have provided an additional tool to monitor the subsurface medium in a non-invasive and relatively inexpensive way, which advances the investigating landslide geological structure. Here, we applied the ambient seismic noise monitoring technique to deep-seated landslide at Fanfan, Ilan area in northeastern Taiwan. The multiple geophysical, geotechnical and geodetic approaches including active multi-channel analysis of surface wave (MASW), real-time kinematic (RTK) measurement, campaign GPS, borehole time-domain reflectometer (TDR) and groundwater level (GWL) gauge are adopted during our monitoring period. A series of relation analysis found that the variations of frequency-dependent seismic velocity changes (dv/v), TDR sliding behavior, time series of groundwater level associated to two heavy rainfall episodes concurrently. With the available shear-wave velocity model (V<sub>S</sub>) derived from MASW, the depth range sensitive to different frequency band for surface wave can be certainly determined. Clear 3-5 Hz dv/v measurement at seismic station of V01 collocated with GWL gauge can be found with the largest reduction of ~ 1%, coinciding with 1 m GWL increasing. Models with different thickness layer (H), basal depth (d), V<sub>s</sub> perturbation (dV<sub>s</sub>) were exercised, and a good fit between predicted spectral dv/v and the frequency-dependent dv/v measurements at seismic station V02 with H = 0.5 m, d = 21 m and dV<sub>s </sub>= 0.5. TDR measurement showed the obvious sliding signals is consistent with the shear zones identified by borehole log with the depth ranging from 48 to 50 m. These results demonstrate that multidisciplinary perspectives are needed to increase a better understanding of landslide structure. Consequently, a model linking variations of dv/v and TDR measurements is proposed to better understand sliding characteristics, which could potentially toward failure prediction of deep-seated landslide.</p>


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. D17-D33 ◽  
Author(s):  
Bing Zhou ◽  
Stewart Greenhalgh ◽  
Alan Green

Crosshole seismic tomography often is applied to image the velocity structure of an interwell medium. If the rocks are anisotropic, the tomographic technique must be adapted to the complex situation; otherwise, it leads to a false interpretation. We propose a nonlinear kinematic inversion method for crosshole seismic tomography in composite transversely isotropic media with known dipping symmetry axes. This method is based on a new version of the first-order traveltime perturbation equation. It directly uses the derivative of the phase velocity rather than the eigenvectors of the body-wave modes to overcome the singularity problem for application to the two quasi-shear waves. We applied an iterative nonlinear solver incorporating our kinematic ray-tracing scheme and directly compute the Jacobian matrix in an arbitrary reference medium. This reconstructs the five elastic moduli or Thomsen parameters from the first-arrival traveltimes of the three seismic body waves (qP, qSV, qSH) in strongly and weakly anisotropic media. We conducted three synthetic experiments that involve determining anisotropic parameters for a homogeneous rock, reconstructing a fault embedded in a strongly anisotropic background, and imaging a complicated four-layer model containing a small channel and a buried dipping interface. We compared results of our nonlinear inversion method with isotropic tomography and the traditional linear anisotropic inversion scheme, which showed the capability and superiority of the new scheme for crosshole tomographic imaging.


1999 ◽  
Vol 202 (23) ◽  
pp. 3423-3430 ◽  
Author(s):  
J.J. Videler ◽  
U.K. Muller ◽  
E.J. Stamhuis

Vertebrates swimming with undulations of the body and tail have inflection points where the curvature of the body changes from concave to convex or vice versa. These inflection points travel down the body at the speed of the running wave of bending. In movements with increasing amplitudes, the body rotates around the inflection points, inducing semicircular flows in the adjacent water on both sides of the body that together form proto-vortices. Like the inflection points, the proto-vortices travel towards the end of the tail. In the experiments described here, the phase relationship between the tailbeat cycle and the inflection point cycle can be used as a first approximation of the phase between the proto-vortex and the tailbeat cycle. Proto-vortices are shed at the tail as body vortices at roughly the same time as the inflection points reach the tail tip. Thus, the phase between proto-vortex shedding and tailbeat cycle determines the interaction between body and tail vortices, which are shed when the tail changes direction. The shape of the body wave is under the control of the fish and determines the position of vortex shedding relative to the mean path of motion. This, in turn, determines whether and how the body vortex interacts with the tail vortex. The shape of the wake and the contribution of the body to thrust depend on this interaction between body vortex and tail vortex. So far, we have been able to describe two types of wake. One has two vortices per tailbeat where each vortex consists of a tail vortex enhanced by a body vortex. A second, more variable, type of wake has four vortices per tailbeat: two tail vortices and two body vortices shed from the tail tip while it is moving from one extreme position to the next. The function of the second type is still enigmatic.


2019 ◽  
Author(s):  
Ileana Tibuleac ◽  
◽  
John Louie ◽  
Joe Iovenitti ◽  
Satish Pullammanappallil ◽  
...  

1976 ◽  
Vol 66 (5) ◽  
pp. 1485-1499 ◽  
Author(s):  
L. J. Burdick ◽  
George R. Mellman

abstract The generalized linear inverse technique has been adapted to the problem of determining an earthquake source model from body-wave data. The technique has been successfully applied to the Borrego Mountain earthquake of April 9, 1968. Synthetic seismograms computed from the resulting model match in close detail the first 25 sec of long-period seismograms from a wide range of azimuths. The main shock source-time function has been determined by a new simultaneous short period-long period deconvolution technique as well as by the inversion technique. The duration and shape of this time function indicate that most of the body-wave energy was radiated from a surface with effective radius of only 8 km. This is much smaller than the total surface rupture length or the length of the aftershock zone. Along with the moment determination of Mo = 11.2 ×1025 dyne-cm, this radius implies a high stress drop of about 96 bars. Evidence in the amplitude data indicates that the polarization angle of shear waves is very sensitive to lateral structure.


2009 ◽  
Author(s):  
Arie Verdel ◽  
Xander Campman ◽  
Deyan Draganov ◽  
Kees Wapenaar

Sign in / Sign up

Export Citation Format

Share Document