Impact of the Equatorial Wind Stress on the Indian Ocean Shallow Meridional Overturning Circulation During the IOD Mature Phase

Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

<p>            This paper investigates the impact of the equatorial wind stress on the Indian Ocean Shallow Meridional Overturning Circulation (SMOC) during the India Ocean Dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper level. In normal years, the wind stress in the Indian Ocean is easterly between 30°S-0°and the westerly wind is between 0°and 30°N, which contributes to a southward Ekman transport at the upper level to form the climatological SMOC. During the years of positive IOD events, abnormal easterly wind near the equator, accompanying with the cold sea surface temperature anomaly (SSTA) along the coast of Sumatra and Java and the warm SSTA along the coast of East Africa, brings southward Ekman transport south of the equator while northward Ekman transport north of the equator. This leads the seawaters moving away from the equator and hence upwelling near the equator as a consequence, to form a pair of small circulation cell symmetric about the equator.</p>

2021 ◽  
Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

Abstract This paper investigates the impact of equatorial wind stress on the equatorial Ekman transport during the Indian Ocean dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper levels. In normal years, the zonal wind stress south of the equator is easterly and that north of the equator is westerly, which contributes to southward Ekman transport at the upper levels to form the climatological Indian Ocean shallow meridional overturning circulation. During the years of positive IOD events, abnormal easterly winds near the equator bring southward Ekman transport south of the equator while they bring northward Ekman transport north of the equator. This causes the seawater to move away from the equator and hence induces upwelling near the equator, which forms a pair of small circulation cells that are symmetric about the equator at the upper levels (approximately 100 m deep). The abnormal circulation cell south (north) of the equator strengthens (weakens) the southward (southward) motion south (north) of the equator. During years with negative IOD events, the opposite occurs. In addition, during the mature period of IOD, the remote sea surface temperature anomaly (SSTA) such as El Niño–Southern Oscillation (ENSO) may exert some influence on equatorial wind stress and Ekman transport anomaly but the influence is weak.


2008 ◽  
Vol 21 (23) ◽  
pp. 6260-6282 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Willem P. Sijp

Abstract A previous study by Mikolajewicz suggested that the wind stress feedback stabilizes the Atlantic thermohaline circulation. This result was obtained under modern climate conditions, for which the presence of the massive continental ice sheets characteristic of glacial times is missing. Here a coupled ocean–atmosphere–sea ice model of intermediate complexity, set up in an idealized spherical sector geometry of the Atlantic basin, is used to show that, under glacial climate conditions, wind stress feedback actually reduces the stability of the meridional overturning circulation (MOC). The analysis reveals that the influence of the wind stress feedback on the glacial MOC response to an external source of freshwater applied at high northern latitudes is controlled by the following two distinct processes: 1) the interactions between the wind field and the sea ice export in the Northern Hemisphere (NH), and 2) the northward Ekman transport in the tropics and upward Ekman pumping in the core of the NH subpolar gyre. The former dominates the response of the coupled system; it delays the recovery of the MOC, and in some cases even stabilizes collapsed MOC states achieved during the hosing period. The latter plays a minor role and mitigates the impact of the former process by reducing the upper-ocean freshening in deep-water formation regions. Hence, the wind stress feedback delays the recovery of the glacial MOC, which is the opposite of what occurs under modern climate conditions. Close to the critical transition threshold beyond which the circulation collapses, the glacial MOC appears to be very sensitive to changes in surface wind stress forcing and exhibits, in the aftermath of the freshwater pulse, a nonlinear dependence upon the wind stress feedback magnitude: a complete and irreversible MOC shutdown occurs only for intermediate wind stress feedback magnitudes. This behavior results from the competitive effects of processes 1 and 2 on the midlatitude upper-ocean salinity during the shutdown phase of the MOC. The mechanisms presented here may be relevant to the large meltwater pulses that punctuated the last glacial period.


Author(s):  
Lei Han

AbstractThe meridional overturning circulation (MOC) seasonality in the Indian Ocean is investigated with the ocean state estimate product, ECCO v4r3. The vertical movements of water parcels are predominantly due to the heaving of the isopycnals all over the basin except off the western coast. Aided by the linear propagation equation of long baroclinic Rossby waves, the driving factor determining the strength of the seasonal MOC in the Indian Ocean is identified as the zonally-integrated Ekman pumping anomaly, rather than the Ekman transport concluded in earlier studies. A new concept of sloshing MOC is proposed, and its difference with the classic Eulerian MOC leads to the so-called diapycnal MOC. The striking resemblance of the Eulerian and sloshing MOCs implies the seasonal variation of the Eulerian MOC in the Indian Ocean is a sloshing mode. The shallow overturning cells manifest themselves in the diapycnal MOC as the most remarkable structure. New perspectives on the upwelling branch of the shallow overturn in the Indian Ocean are offered based on diapycnal vertical velocity. The discrepancy among the observation-based estimates on the bottom inflow across 32°S of the basin is interpreted with the seasonal sloshing mode. Consequently, the “missing mixing” in the deep Indian Ocean is attributed to the overestimated diapycnal volume fluxes. Decomposition of meridional heat transport (MHT) into sloshing and diapycnal components clearly shows the dominant mechanism of MHT in the Indian Ocean in various seasons.


2005 ◽  
Vol 2 (5) ◽  
pp. 473-505 ◽  
Author(s):  
K. Döös

Abstract. The wind driven aspects of the meridional overturning circulation of the world ocean and the Conveyor Belt is studied making use of a simple analytical model. The model consists of three reduced gravity layers with an inviscid Sverdrupian interior and a western boundary layer. The net north-south exchange is made possible by setting appropriate western boundary conditions, so that most of the transport is confined to the western boundary layer, while the interior is the Sverdrupian solution to the wind stress. The flow across the equator is made possible by the change of potential vorticity by the Rayleigh friction in the western boundary layer, which is sufficient to permit water and the Conveyor Belt to cross the equator. The cross-equatorial flow is driven by a weak meridional pressure gradient in opposite direction in the two layers on the equator at the western boundary. The model is applied to the World Ocean with a realistic wind stress. The amplitude of the Conveyor Belt is set by the northward Ekman transport in the Southern Ocean and the outcropping latitude of the NADW. It is in this way possible to set the amount of NADW that is pumped up from the deep ocean and driven northward by the wind and converted in the surface layer into less dense water by choosing the outcropping latitude and the depth of the layers at the western boundary. The model has proved to be able to simulate many of the key features of the Conveyor Belt and the meridional overturning cells of the World Ocean. This despite that there is no deep ocan mixing and that the water mass conversions in the this model are made at the surface.


2011 ◽  
Vol 24 (7) ◽  
pp. 1965-1984 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Oleg A. Saenko

Abstract Recent results based on models using prescribed surface wind stress forcing have suggested that the net freshwater transport Σ by the Atlantic meridional overturning circulation (MOC) into the Atlantic basin is a good indicator of the multiple-equilibria regime. By means of a coupled climate model of intermediate complexity, this study shows that this scalar Σ cannot capture the connection between the properties of the steady state and the impact of the wind stress feedback on the evolution of perturbations. This implies that, when interpreting the observed value of Σ, the position of the present-day climate is systematically biased toward the multiple-equilibria regime. The results show, however, that the stabilizing influence of the wind stress feedback on the MOC is restricted to a narrow window of freshwater fluxes, located in the vicinity of the state characterized by a zero freshwater flux divergence over the Atlantic basin. If the position of the present-day climate is farther away from this state, then wind stress feedbacks are unable to exert a persistent effect on the modern MOC. This is because the stabilizing influence of the shallow reverse cell situated south of the equator during the off state rapidly dominates over the destabilizing influence of the wind stress feedback when the freshwater forcing gets stronger. Under glacial climate conditions by contrast, a weaker sensitivity with an opposite effect is found. This is ultimately due to the relatively large sea ice extent of the glacial climate, which implies that, during the off state, the horizontal redistribution of fresh waters by the subpolar gyre does not favor the development of a thermally direct MOC as opposed to the modern case.


2020 ◽  
Vol 50 (3) ◽  
pp. 679-694
Author(s):  
Lei Han ◽  
Rui Xin Huang

AbstractThe zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.


Sign in / Sign up

Export Citation Format

Share Document