scholarly journals Impact of Equatorial Wind Stress on Ekman Transport During the Mature Phase of the Indian Ocean Dipole

Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

Abstract This paper investigates the impact of equatorial wind stress on the equatorial Ekman transport during the Indian Ocean dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper levels. In normal years, the zonal wind stress south of the equator is easterly and that north of the equator is westerly, which contributes to southward Ekman transport at the upper levels to form the climatological Indian Ocean shallow meridional overturning circulation. During the years of positive IOD events, abnormal easterly winds near the equator bring southward Ekman transport south of the equator while they bring northward Ekman transport north of the equator. This causes the seawater to move away from the equator and hence induces upwelling near the equator, which forms a pair of small circulation cells that are symmetric about the equator at the upper levels (approximately 100 m deep). The abnormal circulation cell south (north) of the equator strengthens (weakens) the southward (southward) motion south (north) of the equator. During years with negative IOD events, the opposite occurs. In addition, during the mature period of IOD, the remote sea surface temperature anomaly (SSTA) such as El Niño–Southern Oscillation (ENSO) may exert some influence on equatorial wind stress and Ekman transport anomaly but the influence is weak.

2020 ◽  
Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

<p>            This paper investigates the impact of the equatorial wind stress on the Indian Ocean Shallow Meridional Overturning Circulation (SMOC) during the India Ocean Dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper level. In normal years, the wind stress in the Indian Ocean is easterly between 30°S-0°and the westerly wind is between 0°and 30°N, which contributes to a southward Ekman transport at the upper level to form the climatological SMOC. During the years of positive IOD events, abnormal easterly wind near the equator, accompanying with the cold sea surface temperature anomaly (SSTA) along the coast of Sumatra and Java and the warm SSTA along the coast of East Africa, brings southward Ekman transport south of the equator while northward Ekman transport north of the equator. This leads the seawaters moving away from the equator and hence upwelling near the equator as a consequence, to form a pair of small circulation cell symmetric about the equator.</p>


Author(s):  
Lei Han

AbstractThe meridional overturning circulation (MOC) seasonality in the Indian Ocean is investigated with the ocean state estimate product, ECCO v4r3. The vertical movements of water parcels are predominantly due to the heaving of the isopycnals all over the basin except off the western coast. Aided by the linear propagation equation of long baroclinic Rossby waves, the driving factor determining the strength of the seasonal MOC in the Indian Ocean is identified as the zonally-integrated Ekman pumping anomaly, rather than the Ekman transport concluded in earlier studies. A new concept of sloshing MOC is proposed, and its difference with the classic Eulerian MOC leads to the so-called diapycnal MOC. The striking resemblance of the Eulerian and sloshing MOCs implies the seasonal variation of the Eulerian MOC in the Indian Ocean is a sloshing mode. The shallow overturning cells manifest themselves in the diapycnal MOC as the most remarkable structure. New perspectives on the upwelling branch of the shallow overturn in the Indian Ocean are offered based on diapycnal vertical velocity. The discrepancy among the observation-based estimates on the bottom inflow across 32°S of the basin is interpreted with the seasonal sloshing mode. Consequently, the “missing mixing” in the deep Indian Ocean is attributed to the overestimated diapycnal volume fluxes. Decomposition of meridional heat transport (MHT) into sloshing and diapycnal components clearly shows the dominant mechanism of MHT in the Indian Ocean in various seasons.


2008 ◽  
Vol 21 (18) ◽  
pp. 4834-4848 ◽  
Author(s):  
Chi-Cherng Hong ◽  
Tim Li ◽  
LinHo ◽  
Jong-Seong Kug

The physical mechanism for the amplitude asymmetry of SST anomalies (SSTA) between the positive and negative phases of the Indian Ocean dipole (IOD) is investigated, using Simple Ocean Data Assimilation (SODA) and NCAR–NCEP data. It is found that a strong negative skewness appears in the IOD east pole (IODE) in the mature phase [September–November (SON)], while the skewness in the IOD west pole is insignificant. Thus, the IOD asymmetry is primarily caused by the negative skewness in IODE. A mixed-layer heat budget analysis indicates that the following two air–sea feedback processes are responsible for the negative skewness. The first is attributed to the asymmetry of the wind stress–ocean advection–SST feedback. During the IOD developing stage [June–September (JJAS)], the ocean linear advection tends to enhance the mixed-layer temperature tendency, while nonlinear advection tends to cool the ocean in both the positive and negative events, thus contributing to the negative skewness in IODE. The second process is attributed to the asymmetry of the SST–cloud–radiation (SCR) feedback. For a positive IODE, the negative SCR feedback continues with the increase of warm SSTA. For a negative IODE, the same negative SCR feedback works when the amplitude of SSTA is small. After reaching a critical value, the cold SSTA may completely suppress the mean convection and lead to cloud free conditions; a further drop of the cold SSTA does not lead to additional thermal damping so that the cold SSTA may grow faster. A wind–evaporation–SST feedback may further amplify the asymmetry induced by the aforementioned nonlinear advection and SCR feedback processes.


2018 ◽  
Vol 31 (16) ◽  
pp. 6611-6631 ◽  
Author(s):  
Linda Hirons ◽  
Andrew Turner

The role of the Indian Ocean dipole (IOD) in controlling interannual variability in the East African short rains, from October to December, is examined in state-of-the-art models and in detail in one particular climate model. In observations, a wet short-rainy season is associated with the positive phase of the IOD and anomalous easterly low-level flow across the equatorial Indian Ocean. A model’s ability to capture the teleconnection to the positive IOD is closely related to its representation of the mean state. During the short-rains season, the observed low-level wind in the equatorial Indian Ocean is westerly. However, half of the models analyzed exhibit mean-state easterlies across the entire basin. Specifically, those models that exhibit mean-state low-level equatorial easterlies in the Indian Ocean, rather than the observed westerlies, are unable to capture the latitudinal structure of moisture advection into East Africa during a positive IOD. Furthermore, the associated anomalous easterly surface wind stress causes upwelling in the eastern Indian Ocean. This upwelling draws up cool subsurface waters, enhancing the zonal sea surface temperature gradient between west and east and strengthening the positive IOD pattern, further amplifying the easterly wind stress. This positive Bjerknes coupled feedback is stronger in easterly mean-state models, resulting in a wetter East African short-rain precipitation bias in those models.


2015 ◽  
Vol 28 (8) ◽  
pp. 3250-3274 ◽  
Author(s):  
Lin Chen ◽  
Tim Li ◽  
Yongqiang Yu

Abstract The mechanisms for El Niño–Southern Oscillation (ENSO) amplitude change under global warming are investigated through quantitative assessment of air–sea feedback processes in present-day and future climate simulations of four models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two models (MPI-ESM-MR and MRI-CGCM3) project strengthened ENSO amplitude, whereas the other two models (CCSM4 and FGOALS-g2) project weakened ENSO amplitude. A mixed layer heat budget diagnosis shows that the major cause of the projected ENSO amplitude difference between the two groups is attributed to the changes of the thermocline and zonal advective feedbacks. A weaker (stronger) equatorial thermocline response to a unit anomalous zonal wind stress forcing in the Niño-4 region is found in CCSM4 and FGOALS-g2 (MPI-ESM-MR and MRI-CGCM3). The cause of the different response arises from the change in the meridional scale of ENSO. A narrower (wider) meridional width of sea surface temperature (SST) and zonal wind stress anomalies causes a strengthening (weakening) of the equatorial thermocline response and thus stronger Bjerknes and zonal advective feedbacks, as the subsurface temperature and zonal current anomalies depend on the thermocline response; consequently, the ENSO amplitude increases (decreases). The change of ENSO meridional width is caused by the change in mean meridional overturning circulation in the equatorial Pacific Ocean, which depends on change of mean wind stress and SST warming patterns under global warming.


Author(s):  
A.B. Polonsky ◽  
◽  
A.V. Torbinskii ◽  
A.V. Gubarev ◽  
◽  
...  

The purpose of this work is to identify individual cases of the occurrence of a critical layer in the system of zonal currents of the Indian Ocean within certain months for the period 1979-2018 aimed at studying the impact of instability of these currents on the Indian Ocean Dipole (IOD) generation. It has been shown that in most cases, the critical layer occurrence coincides with the onset of positive IOD events and takes place one or two months before the onset of these events. This indicates that sporadic instability of the system of zonal currents is one of the main mechanisms for generating IOD events in the region.


2009 ◽  
Vol 22 (10) ◽  
pp. 2678-2693 ◽  
Author(s):  
Chie Ihara ◽  
Yochanan Kushnir ◽  
Mark A. Cane ◽  
Victor H. de la Peña

Abstract The response of the equatorial Indian Ocean climate to global warming is investigated using model outputs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. In all of the analyzed climate models, the SSTs in the western equatorial Indian Ocean warm more than the SSTs in the eastern equatorial Indian Ocean under global warming; the mean SST gradient across the equatorial Indian Ocean is anomalously positive to the west in a warmer twenty-first-century climate compared to the twentieth-century climate, and it is dynamically consistent with the anomalous westward zonal wind stress and anomalous positive zonal sea level pressure (SLP) gradient to the east at the equator. This change in the zonal SST gradient in the equatorial Indian Ocean is detected even in the lowest-emission scenario, and the size of the change is not necessarily larger in the higher-emission scenario. With respect to the change over the equatorial Pacific in climate projections, the subsurface central Pacific displays the strongest cooling or weakest warming around the thermocline depth compared to that above and below in all of the climate models, whereas changes in the zonal SST gradient and zonal wind stress around the equator are model dependent and not straightforward.


2008 ◽  
Vol 21 (15) ◽  
pp. 3740-3754 ◽  
Author(s):  
Takaaki Yokoi ◽  
Tomoki Tozuka ◽  
Toshio Yamagata

Abstract Using an ocean general circulation model (OGCM), seasonal variation of the Seychelles Dome (SD) is investigated for the first time. The SD is an oceanic thermal dome located in the southwestern Indian Ocean, and its influence on sea surface temperature is known to play an important role in the Indian monsoon system. Its seasonal variation is dominated by a remarkable semiannual cycle resulting from local Ekman upwelling. This semiannual nature is explained by different contributions of the following two components of the Ekman pumping: one term that is proportional to the planetary beta and the zonal wind stress and the other term that is proportional to the wind stress curl. The former is determined by the seasonal change in the zonal component of the wind stress vector above the SD; it is associated with the Indian monsoon and causes downwelling (upwelling) during boreal summer (boreal winter). The latter, whose major contribution comes from the meridional gradient of the zonal wind stress, also shows a clear annual cycle with strong upwelling during boreal summer and fall. However, it remains almost constant for 5 months from June to October, even though the zonal wind stress itself varies significantly during this period. The above overall feature is due to the unique location of the SD; it is located between the following two regions: one is dominated by the seasonal variation in wind stress resulting from the Indian monsoon, and the other is dominated by the southeasterly trade winds that prevail throughout a year. The above uniqueness provides a novel mechanism that causes the strong semiannual cycle in the tropical Indian Ocean.


2007 ◽  
Vol 37 (3) ◽  
pp. 743-763 ◽  
Author(s):  
J. Hirschi ◽  
J. Marotzke

Abstract Numerical models are used to test whether the meridional overturning circulation (MOC) can be reconstructed from boundary densities and the wind stress. In idealized model setups without topography the strength as well as the temporal and spatial variability of the MOC cell can largely be reproduced from boundary densities and the zonal wind stress. With added slopes along the meridional boundaries, most of the depth-averaged flow is missed and neither strength nor spatial structure of the MOC is well reproduced. However, the temporal evolution of both MOC and its estimate are similar. In an eddy-permitting model with realistic bottom topography the contribution of the depth-averaged meridional flow to the MOC is captured at some places while it is missed at others. Nevertheless, boundary densities and the zonal wind stress allow the leading modes of the temporal and spatial MOC variability to be reproduced. On seasonal time scales most of the MOC variability is due to the wind stress but changes in the boundary density affect the MOC as well. On interannual time scales the MOC variability largely reflects changes in the boundary density. Generally, the MOC reconstructions are accurate when bottom velocities are small, an assumption made in the reconstruction approach. The results are relevant for estimates of both the modern and the past MOC. In the real ocean, boundary densities can be obtained from measurements of temperature, conductivity, and pressure in the water column, whereas past seawater densities have left their imprint in sea sediments.


Sign in / Sign up

Export Citation Format

Share Document