Reduced Stability of the Atlantic Meridional Overturning Circulation due to Wind Stress Feedback during Glacial Times

2008 ◽  
Vol 21 (23) ◽  
pp. 6260-6282 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Willem P. Sijp

Abstract A previous study by Mikolajewicz suggested that the wind stress feedback stabilizes the Atlantic thermohaline circulation. This result was obtained under modern climate conditions, for which the presence of the massive continental ice sheets characteristic of glacial times is missing. Here a coupled ocean–atmosphere–sea ice model of intermediate complexity, set up in an idealized spherical sector geometry of the Atlantic basin, is used to show that, under glacial climate conditions, wind stress feedback actually reduces the stability of the meridional overturning circulation (MOC). The analysis reveals that the influence of the wind stress feedback on the glacial MOC response to an external source of freshwater applied at high northern latitudes is controlled by the following two distinct processes: 1) the interactions between the wind field and the sea ice export in the Northern Hemisphere (NH), and 2) the northward Ekman transport in the tropics and upward Ekman pumping in the core of the NH subpolar gyre. The former dominates the response of the coupled system; it delays the recovery of the MOC, and in some cases even stabilizes collapsed MOC states achieved during the hosing period. The latter plays a minor role and mitigates the impact of the former process by reducing the upper-ocean freshening in deep-water formation regions. Hence, the wind stress feedback delays the recovery of the glacial MOC, which is the opposite of what occurs under modern climate conditions. Close to the critical transition threshold beyond which the circulation collapses, the glacial MOC appears to be very sensitive to changes in surface wind stress forcing and exhibits, in the aftermath of the freshwater pulse, a nonlinear dependence upon the wind stress feedback magnitude: a complete and irreversible MOC shutdown occurs only for intermediate wind stress feedback magnitudes. This behavior results from the competitive effects of processes 1 and 2 on the midlatitude upper-ocean salinity during the shutdown phase of the MOC. The mechanisms presented here may be relevant to the large meltwater pulses that punctuated the last glacial period.

2013 ◽  
Vol 26 (18) ◽  
pp. 7198-7220 ◽  
Author(s):  
Stephanie M. Downes ◽  
Andrew McC. Hogg

Abstract Thirteen state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to evaluate the response of the Antarctic Circumpolar Current (ACC) transport and Southern Ocean meridional overturning circulation to surface wind stress and buoyancy changes. Understanding how these flows—fundamental players in the global distribution of heat, gases, and nutrients—respond to climate change is currently a widely debated issue among oceanographers. Here, the authors analyze the circulation responses of these coarse-resolution coupled models to surface fluxes. Under a future CMIP5 climate pathway where the equivalent atmospheric CO2 reaches 1370 ppm by 2100, the models robustly project reduced Southern Ocean density in the upper 2000 m accompanied by strengthened stratification. Despite an overall increase in overlying wind stress (~20%), the projected ACC transports lie within ±15% of their historical state, and no significant relationship with changes in the magnitude or position of the wind stress is identified. The models indicate that a weakening of ACC transport at the end of the twenty-first century is correlated with a strong increase in the surface heat and freshwater fluxes in the ACC region. In contrast, the surface heat gain across the ACC region and the wind-driven surface transports are significantly correlated with an increased upper and decreased lower Eulerian-mean meridional overturning circulation. The change in the eddy-induced overturning in both the depth and density spaces is quantified, and it is found that the CMIP5 models project partial eddy compensation of the upper and lower overturning cells.


2020 ◽  
Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

<p>            This paper investigates the impact of the equatorial wind stress on the Indian Ocean Shallow Meridional Overturning Circulation (SMOC) during the India Ocean Dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper level. In normal years, the wind stress in the Indian Ocean is easterly between 30°S-0°and the westerly wind is between 0°and 30°N, which contributes to a southward Ekman transport at the upper level to form the climatological SMOC. During the years of positive IOD events, abnormal easterly wind near the equator, accompanying with the cold sea surface temperature anomaly (SSTA) along the coast of Sumatra and Java and the warm SSTA along the coast of East Africa, brings southward Ekman transport south of the equator while northward Ekman transport north of the equator. This leads the seawaters moving away from the equator and hence upwelling near the equator as a consequence, to form a pair of small circulation cell symmetric about the equator.</p>


2011 ◽  
Vol 24 (7) ◽  
pp. 1965-1984 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Oleg A. Saenko

Abstract Recent results based on models using prescribed surface wind stress forcing have suggested that the net freshwater transport Σ by the Atlantic meridional overturning circulation (MOC) into the Atlantic basin is a good indicator of the multiple-equilibria regime. By means of a coupled climate model of intermediate complexity, this study shows that this scalar Σ cannot capture the connection between the properties of the steady state and the impact of the wind stress feedback on the evolution of perturbations. This implies that, when interpreting the observed value of Σ, the position of the present-day climate is systematically biased toward the multiple-equilibria regime. The results show, however, that the stabilizing influence of the wind stress feedback on the MOC is restricted to a narrow window of freshwater fluxes, located in the vicinity of the state characterized by a zero freshwater flux divergence over the Atlantic basin. If the position of the present-day climate is farther away from this state, then wind stress feedbacks are unable to exert a persistent effect on the modern MOC. This is because the stabilizing influence of the shallow reverse cell situated south of the equator during the off state rapidly dominates over the destabilizing influence of the wind stress feedback when the freshwater forcing gets stronger. Under glacial climate conditions by contrast, a weaker sensitivity with an opposite effect is found. This is ultimately due to the relatively large sea ice extent of the glacial climate, which implies that, during the off state, the horizontal redistribution of fresh waters by the subpolar gyre does not favor the development of a thermally direct MOC as opposed to the modern case.


2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


2019 ◽  
Vol 32 (9) ◽  
pp. 2537-2551 ◽  
Author(s):  
Louis-Philippe Nadeau ◽  
Raffaele Ferrari ◽  
Malte F. Jansen

Abstract Changes in deep-ocean circulation and stratification have been argued to contribute to climatic shifts between glacial and interglacial climates by affecting the atmospheric carbon dioxide concentrations. It has been recently proposed that such changes are associated with variations in Antarctic sea ice through two possible mechanisms: an increased latitudinal extent of Antarctic sea ice and an increased rate of Antarctic sea ice formation. Both mechanisms lead to an upward shift of the Atlantic meridional overturning circulation (AMOC) above depths where diapycnal mixing is strong (above 2000 m), thus decoupling the AMOC from the abyssal overturning circulation. Here, these two hypotheses are tested using a series of idealized two-basin ocean simulations. To investigate independently the effect of an increased latitudinal ice extent from the effect of an increased ice formation rate, sea ice is parameterized as a latitude strip over which the buoyancy flux is negative. The results suggest that both mechanisms can effectively decouple the two cells of the meridional overturning circulation (MOC), and that their effects are additive. To illustrate the role of Antarctic sea ice in decoupling the AMOC and the abyssal overturning cell, the age of deep-water masses is estimated. An increase in both the sea ice extent and its formation rate yields a dramatic “aging” of deep-water masses if the sea ice is thick and acts as a lid, suppressing air–sea fluxes. The key role of vertical mixing is highlighted by comparing results using different profiles of vertical diffusivity. The implications of an increase in water mass ages for storing carbon in the deep ocean are discussed.


2006 ◽  
Vol 19 (15) ◽  
pp. 3751-3767 ◽  
Author(s):  
Véronique Bugnion ◽  
Chris Hill ◽  
Peter H. Stone

Abstract Multicentury sensitivities in a realistic geometry global ocean general circulation model are analyzed using an adjoint technique. This paper takes advantage of the adjoint model’s ability to generate maps of the sensitivity of a diagnostic (i.e., the meridional overturning’s strength) to all model parameters. This property of adjoints is used to review several theories, which have been elaborated to explain the strength of the North Atlantic’s meridional overturning. This paper demonstrates the profound impact of boundary conditions in permitting or suppressing mechanisms within a realistic model of the contemporary ocean circulation. For example, the so-called Drake Passage Effect in which wind stress in the Southern Ocean acts as the main driver of the overturning’s strength, is shown to be an artifact of boundary conditions that restore the ocean’s surface temperature and salinity toward prescribed climatologies. Advective transports from the Indian and Pacific basins play an important role in setting the strength of the overturning circulation under “mixed” boundary conditions, in which a flux of freshwater is specified at the ocean’s surface. The most “realistic” regime couples an atmospheric energy and moisture balance model to the ocean. In this configuration, inspection of the global maps of sensitivity to wind stress and diapycnal mixing suggests a significant role for near-surface Ekman processes in the Tropics. Buoyancy also plays an important role in setting the overturning’s strength, through direct thermal forcing near the sites of convection, or through the advection of salinity anomalies in the Atlantic basin.


Science ◽  
2012 ◽  
Vol 335 (6064) ◽  
pp. 76-79 ◽  
Author(s):  
Daniela Matei ◽  
Johanna Baehr ◽  
Johann H. Jungclaus ◽  
Helmuth Haak ◽  
Wolfgang A. Müller ◽  
...  

Attempts to predict changes in Atlantic Meridional Overturning Circulation (AMOC) have yielded little success to date. Here, we demonstrate predictability for monthly mean AMOC strength at 26.5°N for up to 4 years in advance. This AMOC predictive skill arises predominantly from the basin-wide upper-mid-ocean geostrophic transport, which in turn can be predicted because we have skill in predicting the upper-ocean zonal density difference. Ensemble forecasts initialized between January 2008 and January 2011 indicate a stable AMOC at 26.5°N until at least 2014, despite a brief wind-induced weakening in 2010. Because AMOC influences many aspects of climate, our results establish AMOC as an important potential carrier of climate predictability.


2021 ◽  
Vol 12 (3) ◽  
pp. 819-835
Author(s):  
Johannes Lohmann ◽  
Daniele Castellana ◽  
Peter D. Ditlevsen ◽  
Henk A. Dijkstra

Abstract. We propose a conceptual model comprising a cascade of tipping points as a mechanism for past abrupt climate changes. In the model, changes in a control parameter, which could for instance be related to changes in the atmospheric circulation, induce sequential tipping of sea ice cover and the ocean's meridional overturning circulation. The ocean component, represented by the well-known Stommel box model, is shown to display so-called rate-induced tipping. Here, an abrupt resurgence of the overturning circulation is induced before a bifurcation point is reached due to the fast rate of change of the sea ice. Because of the multi-scale nature of the climate system, this type of tipping cascade may also be a risk concerning future global warming. The relatively short timescales involved make it challenging to detect these tipping points from observations. However, with our conceptual model we find that there can be a significant delay in the tipping because the system is attracted by the stable manifold of a saddle during the rate-induced transition before escaping towards the undesired state. This opens up the possibility for an early warning of the impending abrupt transition via detection of the changing linear stability in the vicinity of the saddle. To do so, we propose estimating the Jacobian from the noisy time series. This is shown to be a useful generic precursor to detect rate-induced tipping.


Sign in / Sign up

Export Citation Format

Share Document