Which role do preferential flowpaths and fractures play in the subsurface reactivity in heterogeneous aquifers?

Author(s):  
Camille Bouchez ◽  
Nicolas Lavenant ◽  
Julien Farasin ◽  
Thierry Labasque ◽  
Ivan Osorio ◽  
...  

<p>The underground fracture pattern, which results from tectonic, climatic and biological stresses, drives water storage dynamic and nutrient cycling in the deep critical zone. Despite a gradual decrease of fracture density with depth, the fracture network is strongly heterogeneous and anisotropic, resulting in a complex pathway distribution with variable hydraulic conductivities. High celerities occurring in preferential flowpaths govern the dynamic response of discharge flows to extreme recharge events. However, the role of preferential flowpaths in transporting fresh meteoritic water and biota remains poorly studied, while the delivery of meteoritic reactants is crucial to initiate underground chemical reactions.</p><p>Here, we study a fractured aquifer in a crystalline catchment located in Brittany (Guidel, France) to investigate the link between depth, water transit time and subsurface reactivity in fractures. Oxygen is used as a tracer of fresh water inputs because its availability has a tremendous impact on oxidation-driven reactions such as weathering processes and microbial activity. We performed vertically sampling of fracture fluid with an inflatable packer capable of isolating fractures in an artesian well located in the discharge chemically-reduced zone of the aquifer. Major ions, dissolved reactive gases, dissolved anthropogenic gases, stable isotopes (O, Sr and Si) and microbial diversity were analysed on five fracture waters sampled at depth between 20 and 55 m. Significant differences have been observed between fractures and younger and more oxygenated waters were found intermittently in fractures at 47 and 54m, with dissolved oxygen concentrations ranging between 0.1 and 0.5 mg/L. The penetration of oxygen in deep fractures reveals either a rapid transport of oxygen or a low consumption of oxygen in preferential flowpaths. These hypotheses are tested with a Discrete Fracture Network model, where first-order reaction rates have been implemented, and the temporal dynamic of oxygen is assessed and linked to water transit time in fractures. We investigate the concept of transit time and water-rock contact time and discuss the relevance of mean transit time to evaluate subsurface reactivity.</p><p>Preferential flowpaths thus not only make fractured aquifers more dynamic but can also, under extreme recharge conditions, efficiently transport fresh water at high depth. The advective-dominant transport of oxygen through artery-like fractures could have a significant impact on short term microbial activity and the associated nutrient cycling but also on long term weathering front propagation.</p>

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S676-S676
Author(s):  
Masanobu Ibaraki ◽  
Hiroshi Ito ◽  
Eku Shimosegawa ◽  
Hideto Toyoshima ◽  
Keiichi Ishigame ◽  
...  

1990 ◽  
Vol 6 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Nico H. J. Pijls ◽  
Gerard J. H. Uijen ◽  
Truus Pijnenburg ◽  
Karel van Leeuwen ◽  
Wim R. M. Aengevaeren ◽  
...  

Author(s):  
Cheemun Lum ◽  
Matthew J. Hogan ◽  
John Sinclair ◽  
Shane English ◽  
Howard Lesiuk ◽  
...  

AbstractPurpose: Computed tomography perfusion (CTP) has been performed to predict which patients with aneurysmal subarachnoid hemorrhage are at risk of developing delayed cerebral ischemia (DCI). Patients with severe arterial narrowing may have significant reduction in perfusion. However, many patients have less severe arterial narrowing. There is a paucity of literature evaluating perfusion changes which occur with mild to moderate narrowing. The purpose of our study was to investigate serial whole-brain CTP/computed tomography angiography in aneurysm-related subarachnoid hemorrhage (aSAH) patients with mild to moderate angiographic narrowing. Methods: We retrospectively studied 18 aSAH patients who had baseline and follow-up whole-brain CTP/computed tomography angiography. Thirty-one regions of interest/hemisphere at six levels were grouped by vascular territory. Arterial diameters were measured at the circle of Willis. The correlation between arterial diameter and change in CTP values, change in CTP in with and without DCI, and response to intra-arterial vasodilator therapy in DCI patients was evaluated. Results: There was correlation among the overall average cerebral blood flow (CBF; R=0.49, p<0.04), mean transit time (R=–0.48, p=0.04), and angiographic narrowing. In individual arterial territories, there was correlation between changes in CBF and arterial diameter in the middle cerebral artery (R=0.53, p=0.03), posterior cerebral artery (R=0.5, p=0.03), and anterior cerebral artery (R=0.54, p=0.02) territories. Prolonged mean transit time was correlated with arterial diameter narrowing in the middle cerebral artery territory (R=0.52, p=0.03). Patients with DCI tended to have serial worsening of CBF compared with those without DCI (p=0.055). Conclusions: Our preliminary study demonstrates there is a correlation between mild to moderate angiographic narrowing and serial changes in perfusion in patients with aSAH. Patients developing DCI tended to have progressively worsening CBF compared with those not developing DCI.


2008 ◽  
Vol 29 (11) ◽  
pp. 1006-1014 ◽  
Author(s):  
Cyril C. Nimmon ◽  
John S. Fleming ◽  
Martin Šámal

Stroke ◽  
1974 ◽  
Vol 5 (5) ◽  
pp. 630-639 ◽  
Author(s):  
ROBERT L. GRUBB ◽  
MARCUS E. RAICHLE ◽  
JOHN O. EICHLING ◽  
MICHEL M. TER-POGOSSIAN

Sign in / Sign up

Export Citation Format

Share Document