In situ evidence of firehose instability in multiple magnetic reconnection

Author(s):  
Alexandra Alexandrova ◽  
Alessandro Retinò ◽  
Andrey Divin ◽  
Lorenzo Matteini ◽  
Olivier Le Contel ◽  
...  

<p>Energy conversion via reconnecting current sheets is common in space and astrophysical plasma. Frequently, current sheets disrupt at multiple reconnection sites, leading to the formation of plasmoid structures between the sites, which might affect energy conversion. We present in situ observations of multiple reconnection in the Earth’s magnetotail. The observed highly accelerated proton beams parallel to magnetic field and the ion-scale wave-like fluctuations of the whistler type imply the development of firehose instability between two active reconnection sites. The linear wave dispersion relation estimated for the measured plasma parameters, indicates a positive growth rate of the firehose-related electromagnetic fluctuations. The detailed time-space evolution of the plasmoid is obtained by reconstruction of observations with the 2.5D implicit particle-in-cell simulations. In course of time, plasma on the periphery of the plasmoid becomes anisotropic and as it overcomes the firehose marginal stability threshold, the corresponding magnetic field fluctuations arise. The results of observations and simulations suggest that the firehose instability operating between reconnection sites, converts plasma energy of the proton temperature anisotropy to the energy of magnetic field fluctuations, counteracting with the conversion of magnetic energy to the energy of plasma in reconnection sites.</p>

2021 ◽  
Author(s):  
Philippa Browning ◽  
Mykola Gordovskyy ◽  
Satashi Inoue ◽  
Eduard Kontar ◽  
Kanya Kusano ◽  
...  

<p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>


2007 ◽  
Vol 14 (4) ◽  
pp. 525-534 ◽  
Author(s):  
M. M. Echim ◽  
H. Lamy ◽  
T. Chang

Abstract. In this paper we investigate the statistical properties of magnetic field fluctuations measured by the four Cluster spacecraft in the cusp and close to the interface with the magnetospheric lobes, magnetopause and magnetosheath. At lower altitudes along the outbound orbit of 26 February 2001, the magnetic field fluctuations recorded by all four spacecraft are random and their Probability Distribution Functions (PDFs) are Gaussian at all scales. The flatness parameter, F – related to the kurtosis of the time series, is equal to 3. At higher altitudes, in the cusp and its vicinity, closer to the interface with the magnetopause and magnetosheath, the PDFs from all Cluster satellites are non-Gaussian and show a clear intermittent behavior at scales smaller than τG≈ 61 s (or 170 km). The flatness parameter increases to values greater than 3 for scales smaller than τG. A Haar wavelet transform enables the identification of the "events" that produce sudden variations of the magnetic field and of the scales that have most of the power. The LIM parameter (i.e. normalized wavelet power) indicates that events for scales below 65 s are non-uniformly distributed throughout the cusp passage. PDFs, flatness and wavelet analysis show that at coarse-grained scales larger than τG the intermittency is absent in the cusp. Fluctuations of the magnetic energy observed during the same orbit in the magnetosheath show PDFs that tend toward a Gaussian at scales smaller than τG found in the cusp. The flatness analysis confirms the decreasing of τG from cusp to magnetosheath. Our analysis reveals the turbulent cusp as a transition region from a non-intermittent turbulent state inside the magnetosphere to an intermittent turbulent state in the magnetosheath that has statistical properties resembling the solar wind turbulence. The observed turbulent fluctuations in the cusp suggests a phenomenon of nonlinear interactions of plasma coherent structures as in contemporary models of space plasma turbulence.


2005 ◽  
Vol 35 (4) ◽  
pp. 625-635 ◽  
Author(s):  
Géza Erdős ◽  
André Balogh

2004 ◽  
Vol 11 (5/6) ◽  
pp. 579-587 ◽  
Author(s):  
L. M. Zelenyi ◽  
H. V. Malova ◽  
V. Yu. Popov ◽  
D. Delcourt ◽  
A. S. Sharma

Abstract. Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets and their potential impact on substorm dynamics are presented.


2020 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Richard Denton ◽  
Kevin Genestreti ◽  
Takuma Nakamura ◽  
Tai Phan ◽  
...  

Abstract Establishing the mechanism of magnetic-to-particle energy conversion through magnetic reconnection in current sheets1 is the key to understanding the impact of fast release of magnetic energy in many space and astrophysical plasma systems, such as during magnetospheric substorms2,3. It is generally believed that an electron-scale diffusion region (EDR), where a magnetic-to-electron energy conversion occurs, has an X-type magnetic-field geometry4 around which the energy of anti-parallel magnetic fields injected is mostly converted to the bulk-flow energy of electrons by magnetic tension of reconnected field-lines5,6. However, it is at present unknown exactly how this energy conversion occurs in EDRs, because there has been no observational method to fully address this problem. Here we present state-of-the-art analysis of multi-spacecraft observations in Earth’s magnetotail of an electron-scale current sheet, which demonstrates that contrary to the standard model of reconnection with an X-type EDR geometry, the fast energy conversion in the detected EDR was caused mostly by magnetic-field annihilation, rather than reconnection. Furthermore, we detected a magnetic island forming in the EDR itself, implying that the EDR had an elongated shape ideal for island generation7 and magnetic-field annihilation. The experimental discovery of the annihilation-dominated EDR reveals a new form of energy conversion in the reconnection process that can occur when the EDR has evolved from the X-type to planar geometry.


1995 ◽  
Vol 53 (3) ◽  
pp. 373-385 ◽  
Author(s):  
G. Knorr ◽  
M. Mond ◽  
C. Grabbe

We study an ideal MHD plasma with the non-vanishing invariants energy, crosshelicity and magnetic helicity, confined in a cylinder with infinitely conducting walls and an externally applied magnetic field B0. The magnetic and velocity fields are expanded in base vector fields, satisfying Δ × Bλ = Bλ. Boundary conditions are imposed to make the curl a self-adjoint operator. The three invariants depend on the time-dependent coefficients of the base vector fields, and are used to construct the partition function to gather statistical information about the equlibrium thermodynamic state to which the plasma relaxes after a turbulent transition. For zero external magnetic field but large magnetic helicity, the energy resides preferentially in magnetic field fluctuations. A sizeable fraction of the kinetic energy initially present is transformed into magnetic energy. The energy condenses via an inverse cascade predominantly to the lowest energy eigenstate, in agreement with results obtained by Taylor. However, since we consider the whole spectrum of eigenstates, the energy does not exclusively occupy the lowest eigenstate. If the eigenvalues are densely spaced (as in a thin torus), the higher eigenmodes also contain appreciable amounts of energy, resulting in a finite pressure of the plasma. For constant and finite external magnetic field, the average induced magnetic field exactly cancels the external field. This indicates that, on a statistical average, the plasma is diamagnetic or superconducting. Superimposed on the average statistical state are fluctuations that may become large if the magnetic helicity is large.


1995 ◽  
Vol 53 (1) ◽  
pp. 109-125 ◽  
Author(s):  
G. Mann

Large-amplitude magnetic field fluctuations often accompanied by density variations are frequently observed in front of the earth's bow shock and in the vicinity of comets by extraterrestrial in situ measurements. They are identified as a manifestation of magnetohydrodynainic (MHD) waves in space plasmas. Because of their large amplitudes (i.e. because the magnetic field amplitude is of the order of the ambient magnetic field, for instance), these fluctuations cannot be satisfactorily described by linear wave theory. In this paper the properties of one-dimensional MHD waves of arbitrary amplitude, i.e. so-called simple MHD waves, are investigated, and a relationship is derived between the enhancement of the magnetic field and the density as well as the propagation velocity. Fast large-amplitude magnetosonic waves exhibit wave steepening. Here the dependence of the steepening time on the wave amplitude is derived and illustrated numerically.


2021 ◽  
Author(s):  
Giulia Cozzani ◽  
Yuri Khotyaintsev ◽  
Daniel Graham ◽  
Mats André

<p>Plasma waves and instabilities driven by temperature anisotropies are known to play a significant role in plasma dynamics, scattering the particles and affecting particle heating and energy conversion between the electromagnetic fields and the particles. Among these instabilities, the electron firehose instability is driven by electron temperature anisotropy T<sub>e,</sub> > T<sub>e,perp</sub> (with respect to the background magnetic field) and produce nonpropagating oblique modes. </p><p>Magnetic reconnection is characterized by regions of enhanced temperature anisotropy that could drive instabilities - including the electron firehose instability - affecting the particle dynamics and the energy conversion of the process. Yet, the electron firehose instability and its role in the reconnection process is still rather unexplored, especially with in situ measurements. </p><p>We report MMS observations of electron firehose fluctuations observed in the exhaust region of a reconnection site in the magnetotail. The fluctuations are observed in the Earthward outflow relatively close (less than 2 d<sub>i</sub> distance) to the electron diffusion region (EDR). While the characteristics of the fluctuations are compatible with oblique electron firehose fluctuations, the associated firehose instability threshold is not exceeded in the interval where the fluctuations are observed. However, the threshold is exceeded in the EDR. The wave analysis in the EDR suggests that the firehose instability could be active at the reconnection site. We suggest that the firehose fluctuations observed in the outflow region may have been originated at the EDR, where the electron temperature anisotropy exceeds the threshold values, and then advected in the outflow region.</p>


2021 ◽  
Author(s):  
Daniel Graham ◽  
Yuri Khotyaintsev ◽  
Konrad Steinvall ◽  
Andris Vaivads ◽  
Milan Maksimovic ◽  
...  

<p>Thin current sheets are routinely observed in the solar wind. Here we report observations of thin current sheets and the associated plasma waves using the Solar Orbiter spacecraft. The Radio and Plasma Waves (RPW) instrument provides high-resolution measurements of the electric field, number density perturbations, and magnetic field fluctuations, which we use to identify and characterise the observed waves, while the magnetic field provided by the MAG instrument is used to characterise the current sheets. We discuss the role of current sheets in the generation of the observed waves and the effects of the waves on the current sheets.<span> </span></p>


2021 ◽  
Vol 2103 (1) ◽  
pp. 012009
Author(s):  
V I Romansky ◽  
A M Bykov ◽  
S M Osipov

Abstract Radio observations revealed a presence of relativistic supernovae - a class of objects intermediate between the regular supernovae and gamma-ray bursts. The typical Lorentz-factors of plasma flows in relativistic radio-bright supernovae were estimated to be about 1.5. Mildly relativistic shocks in electron-ion plasmas are known to efficiently accelerate radio-emitting electrons if the shock is subluminous. The inclination angle of the velocity of subluminous shock to the ambient magnetic field should be below a critical angle which depends on the Mach number and the plasma magnetization parameter. In this paper we present particle-in-cell modeling of electron acceleration by mildly-relativistic collisionless shock of different obliquity in a plasma with ratio of the magnetic energy to the bulk kinetic energy σ ≈ 0.004 which is of interest for the relativistic supernovae modeling. It was shown earlier that a development of the ion scale Bell-type instability in electron-ion relativistic shock may have a strong influence on the electron injection and acceleration. In the time period of about 1500 ω p i − 1 (ωpi is the ion plasma frequency) after the shock initialization the magnetic field fluctuations generated by Bell’s instability may significantly decreases number of accelerated electrons even in a sub-luminous shock. We study here the evolution of the electron spectra of subluminous shocks of different obliquity. This is important to for modeling of synchrothron spectra from relativistic supernovae.


Sign in / Sign up

Export Citation Format

Share Document