Experimental black and brown carbon heating rate and from mid-latitudes to the Arctic along two years (2018-2019) of research cruises: the energy gradient for the Arctic Amplification

Author(s):  
Luca Ferrero ◽  
Niccolò Losi ◽  
Alessandra Bigogno ◽  
Asta Gregoric ◽  
Martin Rigler ◽  
...  

<p>Black carbon (BC) and Brown Carbon (BrC) absorbs sunlight and heat the atmosphere. The heating rate (HR) can be determined from the divergence of the net radiative flux with altitude (vertical profiles) or from the modelling activity; however, it determination is, up to now, too sparse, does not account for light-absorbing-aerosol (LAA) speciation and for the influence of different cloudy sky conditions on the BC induced heating rate (HR) in the atmospheric layer below clouds. This work applies a new method (Ferrero et al., 2018) to experimentally determine (at high time resolution) the HR induced by the LAA from mid-latidudes to the Arctic along two years (2018-2019, June-August) of oceanographic cruises moving from 54°N to 81°N and from 2°W to 25°E.</p><p>The HR was experimentally determined at high time resolution and apportioned in the context of LAA species (BC, BrC), and sources (fossil fuel, FF; biomass burning, BB) as reported in Ferrero et al. (2018) equipping the Oceania vessel of the Polish Academy of Science  with the following instrumentation:</p><p>1) Aethalometer (AE-33, Magee Scientific, 7-λ), 2) Multiplexer-Radiometer-Irradiometer ROX (diffuse, direct and reflected radiance: 350-1000 nm, 1 nm resolution), 3) a SPN1 radiometer (global and diffuse radiation), 4) High volume sampler (TSP ECHO-PUF Tecora). Samples were analysed for ions (Dionex IC) and by EC/OC by using DRI Model 2015 Multi-Wavelength Thermal/Optical Carbon Analyzer. Radiometers were compensated for the ship pitch and roll by an automatic gimbal. AE33 absorption coefficient accuracy was determined through comparison with a MAAP (Thermo-Fischer).</p><p>The HR showed a clear latitudinal behavior with higher values in the harbor of Gdansk (0.29±0.01 K/day) followed by the Baltic Sea (0.04±0.01 K/day), the Norvegian Sea (0.01±0.01 K/day) and finally with the lowest values in the pure Arctic Ocean (0.003±0.001 K/day).</p><p>They followed the decrease of both BC concentrations and global radiation from 1189±21 ng/m<sup>3</sup>  and 230±6 W/m<sup>2</sup> (Gdansk) to 27±1 ng/m<sup>3</sup> and 111±3 W/m<sup>2</sup> (Arctic Ocean). The latitunal gradient of the HR clearly demonstrate that the warming of the Arctic could be influenced by a heat transport. In this respect, the LAA added about 300 J/m<sup>3</sup> at mid-latitudes and only 3 J/m<sup>3</sup> close to the North Pole. Moreover, above the Arctic circle, 70% of the HR was due to the diffuse radiation induced by cloud presence, a condition that climate models in clear-sky assumption cannot capture. In addition, in the Arctic the BrC experienced an increase of 60% in determining the HR compared to mid-latitudes.</p><p>Acknowledgements: GEMMA Center - Project MIUR – Dipartimenti di Eccellenza 2018–2022.</p><p>Reference: Ferrero, L., et al (2018) Environ. Sci Tech., 52, 3546−3555</p>

2020 ◽  
Vol 7 (9) ◽  
Author(s):  
Congcong Yu ◽  
Jinpei Yan ◽  
Honghai Zhang ◽  
Qi Lin ◽  
Hongguo Zheng ◽  
...  

2020 ◽  
Author(s):  
Luca Ferrero ◽  
Asta Gregorič ◽  
Griša Močnik ◽  
Martin Rigler ◽  
Sergio Cogliati ◽  
...  

Abstract. We experimentally quantified the impact of cloud fraction and cloud type on the heating rates (HRs) of black and brown carbon (HRBC and HRBrC).In particular, in this work, we examine in more detail the average cloud effect (Ferrero et al., 2018) using high time-resolution measurements of aerosol absorption at multiple-wavelengths coupled with spectral measurements of the direct, diffuse and surface reflected radiation and lidar data in the Po Valley. The experimental set-up allowed a direct determination of HRBC and HRBrC in any sky condition. The highest values of total HR were found in the middle of the winter (1.43 ± 0.05 K day−1) while the lowest in spring (0.54 ± 0.02 K day−1) Overall the HRBrC accounted for 13.7 ± 0.2 % of the total HR, the BrC being characterized by an AAE of 3.49 ± 0.01. Simultaneously, sky conditions were classified (from clear-sky to cloudy) in terms of fraction of sky covered by clouds (oktas) and cloud types. Cloud types were grouped as a function of altitude into the following classes: 1) low level ( 7 km) cirrus, cirrocumulus-cirrostratus. Measurements carried out in different sky conditions at high-time resolution showed a constant decrease of HR with increasing cloudiness of the atmosphere enabling us to quantify for the first time the bias (in %) in the aerosol HR introduced by improperly assuming clear-sky conditions in radiative transfer calculations. In fact, during the campaign, clear sky conditions were only present 23 % of the time while the remaining time (77 %) was characterized by cloudy conditions. Our results show that, by incorrectly assuming clear-sky conditions, the HR of light absorbing aerosol can be largely overestimated (by 50 % in low cloudiness, oktas = 1–2), up to over 400 % (in complete overcast conditions, i.e., oktas = 7–8). The impact of different cloud types on the HR compared to a clear sky condition was also investigated. Cirrus were found to have a modest impact, decreasing the HRBC and HRBrC by −1– −5 %. Cumulus decreased the HRBC and HRBrC by −31 ± 12 and −26 ± 7 %, respectively, while cirrocumulus-cirrostratus by −60 ± 8 and −54 ± 4 %, which was comparable to the impact of altocumulus (−60 ± 6 and −46 ± 4 %). A high impact on HRBC and HRBrC was found for stratocumulus (−63 ± 6 and −58 ± 4 %, respectively) and altostratus (−78 ± 5 and −73 ± 4 %, respectively), although the highest impact was found to be associated to stratus that suppressed the HRBC and HRBrC by −85 ± 5 and −83 ± 3 %, respectively. Additionally, the cloud influence on the radiation spectrum that interacts with the absorbing aerosol was investigated. Black and brown carbon (BC and BrC) have different spectral responses (a different absorption Angstrom exponent, AAE) and our results show that the presence of clouds causes a greater decrease for the HRBC with respect to to HRBrC going clear sky to complete overcast conditions; the observed the difference is 12 ± 6 %. This means that, compared to BC, BrC is more efficient in heating the surrounding atmosphere in cloudy conditions than in clear sky. Overall, this study extends the results of a previous work (Ferrero et al., 2018), highlighting the need to take into account both the role of cloudiness and of different cloud types to better estimate the HR associated to both BC and BrC, and in turn decrease the uncertainties associated to the quantification of the impact of these species on radiation and climate.


1994 ◽  
Vol 144 ◽  
pp. 431-434
Author(s):  
M. Minarovjech ◽  
M. Rybanský

AbstractThis paper deals with a possibility to use the ground-based method of observation in order to solve basic problems connected with the solar corona research. Namely:1.heating of the solar corona2.course of the global cycle in the corona3.rotation of the solar corona and development of active regions.There is stressed a possibility of high-time resolution of the coronal line photometer at Lomnický Peak coronal station, and use of the latter to obtain crucial observations.


2010 ◽  
Vol 180 (4) ◽  
pp. 424 ◽  
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
S.F. Bondar ◽  
V.L. Plokhotnichenko ◽  
A. Guarnieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document