Investigation of inter-annual and seasonal variations of the Martian convective PBL by GCM simulations

Author(s):  
Cem Berk Senel ◽  
Orkun Temel ◽  
Sara Porchetta ◽  
Hakan Sert ◽  
Ozgur Karatekin ◽  
...  

<p>The Martian planetary boundary layer (PBL) is an important component of the Martian climate. It is the lowest portion of the atmosphere where the strong buoyant and shear forces influence the interaction between surface and atmosphere <strong>[1]</strong>. The Martian PBL exhibits extreme events compared to the Earth's PBL, such as global dust storms, local dust devils, turbulent gusts and strong updraughts. Due to the thinner atmosphere of Mars and lower surface thermal inertia, the Martian planetary boundary layer shows stronger diurnal variations compared to its terrestrial counterpart. Moreover, as a result of the thinner atmosphere, radiative heat forcing is stronger, such that the Martian planetary boundary layer height can reach up to 10 km. Radiative forcing on Mars is affected by the atmospheric cycles, i.e. CO<sub>2</sub>, water and dust cycles. In this study, we perform GCM simulations, using dust climatologies corresponding to the last 10 Mars years and present the inter-annual and seasonal variations in the planetary boundary layer height, mixed-layer potential temperature, convective velocity scale, friction velocity and Richardson number. To perform these GCM simulations, the Mars version of planetWRF (MarsWRF) model <strong>[2]</strong> is utilized, that solves the fully-compressible, non-hydrostatic Euler equations in a finite difference framework.</p><p><strong>[1]</strong> Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B., & Tyler, G. L. (2008). The depth of the convective boundary layer on Mars. Icarus, 198(1), 57-66.</p><p><strong>[2]</strong> Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research: Planets, 112(E9).</p>

2010 ◽  
Vol 23 (21) ◽  
pp. 5790-5809 ◽  
Author(s):  
Shuyan Liu ◽  
Xin-Zhong Liang

Abstract An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.


2014 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fabio J. da Silva Lopes ◽  
Juan L. Guerrero-Rascado ◽  
Maria José Granados-Muñoz ◽  
Riad Bourayou ◽  
...  

2021 ◽  
pp. 118919
Author(s):  
Yubing Pan ◽  
Qianqian Wang ◽  
Pengkun Ma ◽  
Xingcan Jia ◽  
Zhiheng Liao ◽  
...  

2021 ◽  
Vol 41 (7) ◽  
pp. 0728002
Author(s):  
于思琪 Yu Siqi ◽  
刘东 Liu Dong ◽  
徐继伟 Xu Jiwei ◽  
王珍珠 Wang Zhenzhu ◽  
吴德成 Wu Decheng ◽  
...  

2020 ◽  
Vol 237 ◽  
pp. 02031
Author(s):  
Alexandros Pantazis ◽  
Alexandros Papayannis

In this work, a full set of recently developed algorithms and techniques is presented, for a single beam-single pointing lidar to be able to perform operational and independent accurate 3 Dimensional (3D) measurements, for slant range visibility, wind speed retrieval, atmospheric layers spatial distribution and categorization, as well as Planetary Boundary Layer Height (PBLH) retrieval, in real or Near Real Time (NRT).The idea behind this development was for any single lidar to be able to perform a set of accurately measured products, either mobile or stationary, with or without network connectivity with other sensors for data-information exchange. The products were determined by the needs of lidar remote scientific and commercial community, in order to be even more attractive and valuable to atmospheric scientists, meteorologists, aviation and shipping safety operators, as well as to the Space lidar community.


Sign in / Sign up

Export Citation Format

Share Document