The strength of the Earth Magnetic field around the Cretaceous Normal Superchron: new data from Costa Rica

Author(s):  
Anita Di Chiara ◽  
Lisa Tauxe ◽  
Hubert Staudigel ◽  
Fabio Florindo ◽  
Yongjae Yu ◽  
...  

<p>There has been an increasing effort toward the constraint of the average and long-term variability of the magnetic field strength, fundamental to better understand the characteristics and behaviour of the geomagnetic dipole field. Nonetheless, open questions remain about the value of the average dipole field, the relation between dipole strength and excursion reversal. Indeed, depending on the criteria adopted to analyse the current database, different long-term average values can be found, leading to different answers. The reason for the open debate can explained with the limited amount of data from key time intervals and geographical areas, due to both to complexities behind the method to obtain absolute paleointensities (several methods and experimental designs, selection criteria, high failure rate, etc..) and suitable materials.</p><p>Here, we focus on the Cretaceous Normal Superchron, a long period, from approximately 121 to 83 Ma, when the magnetic field was characterised by a stable polarity. Yet, few paleointensity data were available so far. In this study, we present new results from 48 Submarine Basaltic Glass sites from pillow lava margins, sampled on the upper crust sequence of the Costa Rica Ophiolite. Ar/Ar ages along with biostratigraphic age constraints from previous studies indicate ages ranging from from 139 to 94 Ma. After 473 samples were measured using the IZZI-Thellier protocol and analysed using strict selection criteria, 13 sites between 109 and 133 Ma gave reliable and robust results. Our new results from Costa Rica suggest that the strength of the Earth Magnetic field during CNS, 70.2 ± 21 ZAm<sup>2</sup>  are slightly lower than the pre-CNS and also lower than, for instance, at Troodos Ophiolite (81 ± 43 ZAm<sup>2</sup>; Tauxe and Staudigel 2004), consistent with the observations by Tauxe (2006) of an average dipole moment being substantially less than the present day value.</p>

2019 ◽  
Vol 484 (4) ◽  
pp. 4495-4506 ◽  
Author(s):  
S Hubrig ◽  
M Küker ◽  
S P Järvinen ◽  
A F Kholtygin ◽  
M Schöller ◽  
...  

Abstract Only 11 O-type stars have been confirmed to possess large-scale organized magnetic fields. The presence of a −600 G longitudinal magnetic field in the O9.7 V star HD 54879 with a lower limit of the dipole strength of ∼2 kG was discovered a few years ago in the framework of the ESO large program ‘B-fields in OB stars’. Our FORS 2 spectropolarimetric observations from 2017 October 4 to 2018 February 21 reveal the presence of short- and long-term spectral variability and a gradual magnetic field decrease from about −300 G down to about −90 G. Different scenarios are discussed in an attempt to interpret our observations. Our FORS 2 radial velocity measurements indicate that HD 54879 is a member of a long-period binary.


2020 ◽  
Vol 196 ◽  
pp. 02024
Author(s):  
Vladimir Kuznetsov

Principally new quantum model of the magnetic field of the Hot Earth [1] is proposed here. The model proceeds from the generation scheme of the Earth magnetic field (EMF) reported at the conference in 2019 [2], where crucial role of quantum entanglement (QE) of the inner G-core matter for EMF generation under the Hall effect was first evidenced. With regard to my impact into geodynamics of the Hot Earth [3] and quantum geophysics [4] the improved version of [2] is presented here. The justification for the model of EMF generation given in the encyclopedia of Geomagnetism [5] due to the daily rotation of the DEL (double electric layer), exciting a weak field and its amplification by the Hall current is first used here.


2020 ◽  
Author(s):  
Alberto Molina Cardín ◽  
Luis Dinis Vizcaíno ◽  
María Luisa Osete López

<p>The magnetic field of the Earth is generated in its core by the process called the geodynamo, which involves convection in the fluid and electrical conducting outer core. The evolution of this complex process is simulated by magnetohydrodynamic models, which provide the state of the core and the magnetic field at any point and any time of the simulation. Nevertheless, the complexity of these models implies a high computational cost. That is why conceptual simple models describing only the main mechanisms from a statistical perspective can also be useful.</p><p>In this work we present a conceptual model that reproduces the main features of the axial dipole moment (ADM) of the Earth magnetic field. It is based on the stochastic dynamics of two Brownian particles interacting with each other within a double-well potential. The obtained simulations are able to mimic the random temporal distribution of reversals and excursions and the asymmetric temporal evolution of ADM during reversals. The relation between the model features and the real mechanisms that lead to the observed behaviour is discussed.</p>


2018 ◽  
Vol 48 (1) ◽  
pp. 23-74
Author(s):  
Mohsen Lutephy

Abstract We report phenomenological inevitable correlation between the Sun’s magnetic field oscillation through the Earth and the Jupiter, with sinusoidal geomagnetic jerks observed at the Earth, additionally aligned with the gravity and length of day sinusoidal variations and we observe too that the Sun and Jovian planets alignments with Jupiter are origin of the observable abrupt geomagnetic jerks whether historical or new, and experimental results demonstrate a possible explanation on the base of the planetary induced currents upon the metallic liquid cores of the planets upon the varying external magnetic fields as the source of heat flows continued by frictional turbulent and convectional fluid fluxes, amplified and expanding by the Earth magnetic field and observations are showing too that it should be an electric coupling effect between metallic cores of the planets, under the magnetic field oscillation so that Jupiter conductive metallic region interacts with Earth metallic core while the Sun’s magnetic field is oscillating through the Jupiter and we see a relation between secular variation of the Earth’s magnetic field and long term trend of 5.9-years signals as a new method to measure geomagnetic secular variation by LOD signals.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document