scholarly journals Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest

Author(s):  
Luise Schulte ◽  
Nadine Bernhardt ◽  
Kathleen Stoof-Leichsenring ◽  
Heike Zimmermann ◽  
Luidmila Pestryakova ◽  
...  

<p>Siberian larch (<em>Larix</em> Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the earth. To be able to predict future responses of these forests to a changing climate, it is important to understand also past dynamics of larch populations. One well-preserved archive to study vegetation changes of the past is sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores. We studied a lake sediment core covering 6700 calibrated years BP, from the Taymyr region in northern Siberia. To enrich the sedaDNA for DNA of our focal species <em>Larix</em>, we combine shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete <em>Larix</em> chloroplast genome. In comparison to shotgun sequencing, hybridization capture results in an increase of taxonomically classified reads by several orders of magnitude and the recovery of near-complete chloroplast genomes of <em>Larix</em>. Variation in the chloroplast reads confirm an invasion of <em>Larix gmelinii</em> into the range of <em>Larix sibirica</em> before 6700 years ago. In this time span, both species can be detected at the site, although larch populations have decreased from a forested area to a single-tree tundra at present. This study demonstrates for the first time that hybridization capture applied to ancient DNA from lake sediments can provide genome-scale information and is a viable tool for studying past changes of a specific taxon.</p>

Author(s):  
Luise Schulte ◽  
Nadine Bernhardt ◽  
Kathleen R. Stoof-Leichsenring ◽  
Heike H. Zimmermann ◽  
Luidmila A. Pestryakova ◽  
...  

AbstractSiberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the world. It is important to understand the past dynamics of larches, in order to predict their likely response to a changing climate in the future. Sedimentary ancient DNA extracted from lake sediment cores can serve as archives to study past vegetation. However, the traditional method of studying sedimentary ancient DNA – metabarcoding – focuses on small fragments which cannot resolve Larix to species level nor allow the detailed study of population dynamics. Here we use shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome to study Larix populations from a sediment core reaching back up to 6700 years in age from the Taymyr region in northern Siberia. In comparison to shotgun sequencing, hybridization capture results in an increase of taxonomically classified reads by several orders of magnitude and the recovery of near-complete chloroplast genomes of Larix. Variation in the chloroplast reads corroborate an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. Since then, both species have been present at the site, although larch populations have decreased with only a few trees remaining in what was once a forested area. This study demonstrates for the first time that hybridization capture applied to ancient DNA from lake sediments can provide genome-scale information and is a viable tool for studying past changes of a specific taxon.


2021 ◽  
Author(s):  
Stefano Meucci ◽  
Luise Schulte ◽  
Kathleen R. Stoof-Leichsenring ◽  
Stefan Kruse ◽  
Konstantin Krutovsky ◽  
...  

<p>Siberian larch forests dominate large areas of northern Russia and contribute important roles for the world´s ecosystem. In order to understand the past dynamics of larches and their adaptive genetic variation, sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores is a crucial source of genetic material. The difficulty of retrieving extremely rare DNA sequences from samples reaching back up to 25000 years in age, is challenging. Previous studies (Schulte et al.) showed that the hybridization capture allowed an enrichment of targeted sequences by several orders of magnitude in comparison to shotgun sequencing method. Therefore, we established for the first time, a hybridization capture method targeting 65 candidate adaptive genes laying on the Larix nuclear genome. Our preliminary results showed the ability of our newly established method to enrich extremely rare DNA sequences of the targeted Larix candidate adaptive genes, which were not retrieved by shotgun sequencing method applied on the same samples. Furthermore, the results allowed to detect and compare specific nucleotide polymorphism of adaptive candidate genes among sedaDNA samples distributed in space and time. The establishment of this new method is laying the basis to investigate possible adaptive variation of larch species acquired across the dry and cold conditions of the Last Glacial Maximum (LGM); as well as their possible advantages or disadvantages in relation to the current environmental changes toward dry and warm conditions.</p>


2021 ◽  
Author(s):  
Barbara von Hippel ◽  
Kathleen R. Stoof-Leichsenring ◽  
Luise Schulte ◽  
Peter Seeber ◽  
Laura S. Epp ◽  
...  

<p>Climate change has a great impact on boreal ecosystems including Siberian larch forests. As a consequence of warming, larch grow is possible in areas where climate used to be too cold, leading to a shift of the tree line into more arctic regions. Most plants co-exist in symbiosis with heterotrophic organisms surrounding their root system. In arctic ecosystems, mycorrhizal fungi are a prerequisite for plant establishment and survival because they support nutrient uptake from nutrient-poor soils and maintain the water supply. Until now, however, knowledge about the co-variation of vegetation and fungi is poor. Certainly, the understanding of dynamic changes in biotic interactions is important to understand adaptation mechanisms of ecosystems to climate change.</p><p>We investigated sedimentary ancient DNA from Lake Levinson Lessing, Taymyr Peninsula (Arctic Siberia, tundra), Lake Lama, Lake Kyutyunda (both northern Siberia, tundra-taiga transition zone) and Lake Bolshoe Toko (southern Siberia, forest area) covering the last about 45.000 years using ITS primers for fungi along with the chloroplast P6 loop marker for vegetation metabarcoding. We found changes in the fungal communities that are in broad agreement with vegetation turnover. To our knowledge, this is the first broad ecological study on lake sediment cores to analyze fungal biodiversity in relation to vegetation change on millennial time scales.</p>


2016 ◽  
Vol 17 (2) ◽  
pp. 300-313 ◽  
Author(s):  
Elmira Mohandesan ◽  
Camilla F. Speller ◽  
Joris Peters ◽  
Hans-Peter Uerpmann ◽  
Margarethe Uerpmann ◽  
...  

2018 ◽  
Author(s):  
Kevin Bethune ◽  
Cédric Mariac ◽  
Marie Couderc ◽  
Nora Scarcelli ◽  
Sylvian Santoni ◽  
...  

Third generation sequencing methods generate significantly longer reads than those produced using alternative sequencing methods. This provides increased possibilities to better study biodiversity, phylogeography and population genetics. We developed a protocol for in-solution enrichment hybridization capture of long DNA fragments applicable to complete chloroplast genomes. The protocol uses cost effective in-house probes developed via long-range PCR and was used in six non-model monocot species (Poaceae: African rice, pearl millet, fonio; and three palm species). DNA was extracted from fresh and silicagel dried leaves. Our protocol successfully captured long read chloroplast fragments (up to 4264 bp median) with an enrichment rate ranging from 15% to 98%. DNA extracted from silicagel dried leaves led to low quality plastome assemblies when compared to freshly extracted DNA. Our protocol could also be generalized to capture long sequences from specific nuclear fragments.


Authorea ◽  
2020 ◽  
Author(s):  
Luise Schulte ◽  
Nadine Bernhardt ◽  
Heike Zimmermann ◽  
Kathleen Stoof Leichsenring ◽  
Luidmila Pestryakova ◽  
...  

2018 ◽  
Author(s):  
Kevin Bethune ◽  
Cédric Mariac ◽  
Marie Couderc ◽  
Nora Scarcelli ◽  
Sylvian Santoni ◽  
...  

Third generation sequencing methods generate significantly longer reads than those produced using alternative sequencing methods. This provides increased possibilities to better study biodiversity, phylogeography and population genetics. We developed a protocol for in-solution enrichment hybridization capture of long DNA fragments applicable to complete chloroplast genomes. The protocol uses cost effective in-house probes developed via long-range PCR and was used in six non-model monocot species (Poaceae: African rice, pearl millet, fonio; and three palm species). DNA was extracted from fresh and silicagel dried leaves. Our protocol successfully captured long read chloroplast fragments (up to 4264 bp median) with an enrichment rate ranging from 15% to 98%. DNA extracted from silicagel dried leaves led to low quality plastome assemblies when compared to freshly extracted DNA. Our protocol could also be generalized to capture long sequences from specific nuclear fragments.


Author(s):  
Luise Schulte ◽  
Nadine Bernhardt ◽  
Kathleen Stoof‐Leichsenring ◽  
Heike H. Zimmermann ◽  
Luidmila A. Pestryakova ◽  
...  

2022 ◽  
Author(s):  
Nadin Rohland ◽  
Swapan Mallick ◽  
Matthew Mah ◽  
Robert M Maier ◽  
Nick J Patterson ◽  
...  

In-solution enrichment for hundreds of thousands of single nucleotide polymorphisms (SNPs) has been the source of >70% of all genome-scale ancient human DNA data published to date. This approach has made it possible to generate data for one to two orders of magnitude lower cost than random shotgun sequencing, making it economical to study ancient samples with low proportions of human DNA, and increasing the rate of conversion of sampled remains into working data thereby facilitating ethical stewardship of human remains. So far, nearly all ancient DNA data obtained using in-solution enrichment has been generated using a set of bait sequences targeting about 1.24 million SNPs (the 1240k reagent). These sequences were published in 2015, but synthesis of the reagent has been cost-effective for only a few laboratories. In 2021, two companies made available reagents that target the same core set of SNPs along with supplementary content. Here, we test the properties of the three reagents on a common set of 27 ancient DNA libraries across a range of richness of DNA content and percentages of human molecules. All three reagents are highly effective at enriching many hundreds of thousands of SNPs. For all three reagents and a wide range of conditions, one round of enrichment produces data that is as useful as two rounds when tens of millions of sequences are read out as is typical for such experiments. In our testing, the Twist Ancient DNA reagent produces the highest coverages, greatest uniformity on targeted positions, and almost no bias toward enriching one allele more than another relative to shotgun sequencing. Allelic bias in 1240k enrichment has made it challenging to carry out joint analysis of these data with shotgun data, creating a situation where the ancient DNA community has been publishing two important bodes of data that cannot easily be co-analyzed by population genetic methods. To address this challenge, we introduce a subset of hundreds of thousands of SNPs for which 1240k data can be effectively co-analyzed with all other major data types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Can Yuan ◽  
Xiufen Sha ◽  
Miao Xiong ◽  
Wenjuan Zhong ◽  
Yu Wei ◽  
...  

AbstractLigusticum L., one of the largest members in Apiaceae, encompasses medicinally important plants, the taxonomic statuses of which have been proved to be difficult to resolve. In the current study, the complete chloroplast genomes of seven crucial plants of the best-known herbs in Ligusticum were presented. The seven genomes ranged from 148,275 to 148,564 bp in length with a highly conserved gene content, gene order and genomic arrangement. A shared dramatic decrease in genome size resulted from a lineage-specific inverted repeat (IR) contraction, which could potentially be a promising diagnostic character for taxonomic investigation of Ligusticum, was discovered, without affecting the synonymous rate. Although a higher variability was uncovered in hotspot divergence regions that were unevenly distributed across the chloroplast genome, a concatenated strategy for rapid species identification was proposed because separate fragments inadequately provided variation for fine resolution. Phylogenetic inference using plastid genome-scale data produced a concordant topology receiving a robust support value, which revealed that L. chuanxiong had a closer relationship with L. jeholense than L. sinense, and L. sinense cv. Fuxiong had a closer relationship to L. sinense than L. chuanxiong, for the first time. Our results not only furnish concrete evidence for clarifying Ligusticum taxonomy but also provide a solid foundation for further pharmaphylogenetic investigation.


Sign in / Sign up

Export Citation Format

Share Document