Identification of nitrate sources, hot spots, and dilution in the Danube River Basin using a multitracer approach

Author(s):  
Janine Halder ◽  
Yuliya Vystavna ◽  
Cedric Douence ◽  
Christian Resch ◽  
Roman Gruber ◽  
...  

<p>The Danube is Europe`s second longest river, stretching from Germany to the Black Sea. Water quality in the Danube River Basin is regularly monitored by the national authorities of all riparian countries and in addition for specific water quality data during the Joint Danube Surveys (JSD), which is organised by the International Commission for the Protection of the Danube River every 6 years.</p><p>This study presents the results of water stable isotopes and stable isotopes (<sup>15</sup>N and <sup>18</sup>O) of nitrate as well as major ion analysis from 3 JDS (2001, 2007, 2019). Results indicate that water stable isotopes allow to trace differences in the amount of snowmelt contribution to the Danube and hence the dilution effects of pollutants e.g. nitrate. The oxygen and nitrogen isotope compositions of nitrate are clearly indicating that nitrate in the Danube main stream mainly derives from waste water effluents, which input is increasing along the stream. This can furthermore be confirmed by results of micropollutant studies that demonstrate an increase of widely consumed pharmaceuticals (carbamazepine, diclofenac and caffeine) at different sections of the Danube River affected by tributary inflows and discharge from urban settlements.</p><p>In summary, this study is an example of combining isotope techniques, hydrological methods but also emerging compounds in order to approach the fate of anthropogenically derived nitrate within the Danube Basin. The results of this study aim to support the 2021 update of the Danube River Basin Management Plan as well as water monitoring practices across the Danube countries.</p>

1994 ◽  
Vol 30 (5) ◽  
pp. 135-145 ◽  
Author(s):  
D. W. Rodda

The Programme has the objective of providing a regional approach to environmental management in the Danube River Basin where there is great pressure from a diverse range of human activities. Serious pollution problems exist from urban populations, from industry, and from intensive agricultural practices. Although the water quality of the main Danube river is probably better than the Rhine because of its greater flow, the same is not the case in the tributaries where there the problems are more serious. A factor which makes a compelling case for a regional approach is the deterioration of the Black Sea into which the main Danube river discharges significant loads of nutrients and a range of non-degradable contaminants. The application of limited financial resources will require fine judgement about the high priority pollution sources that will lead to cost-effective improvements. This action, and other technical assistance, also requires a considerable effort to strengthen the organisations having responsibility for environmental management, and to develop effective public participation. The paper emphasises the water pollution problems in the river basin.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3634
Author(s):  
Zoltan Horvat ◽  
Mirjana Horvat ◽  
Kristian Pastor ◽  
Vojislava Bursić ◽  
Nikola Puvača

This study investigates the potential of using principal component analysis and other multivariate analysis techniques to evaluate water quality data gathered from natural watercourses. With this goal in mind, a comprehensive water quality data set was used for the analysis, gathered on a reach of the Danube River in 2011. The considered measurements included physical, chemical, and biological parameters. The data were collected within seven data ranges (cross-sections) of the Danube River. Each cross-section had five verticals, each of which had five sampling points distributed over the water column. The gathered water quality data was then subjected to several multivariate analysis techniques. However, the most attention was attributed to the principal component analysis since it can provide an insight into possible grouping tendencies within verticals, cross-sections, or the entire considered reach. It has been concluded that there is no stratification in any of the analyzed water columns. However, there was an unambiguous clustering of sampling points with respect to their cross-sections. Even though one can attribute these phenomena to the unsteady flow in rivers, additional considerations suggest that the position of a cross-section can have a significant impact on the measured water quality parameters. Furthermore, the presented results indicate that these measurements, combined with several multivariate analysis methods, especially the principal component analysis, may be a promising approach for investigating the water quality tendencies of alluvial rivers.


2020 ◽  
Author(s):  
Eva Feldbacher ◽  
Stefan Schmutz ◽  
Gabriele Weigelhofer ◽  
Thomas Hein

<p>Austria has a share in three international river basins (Danube, Elbe, Rhine), but by far the most of its territory (> 96%) drains into the Danube. This Austrian territory accounts for 10% of the total area of the Danube River Basin and belongs entirely to the Upper Danube Basins, which extends from the source of the Danube in Germany to Bratislava at Austria’s eastern border to Slovakia. Austria contributes approx. 25% (ca. 50 km³/a ) to the total yearly discharge of the Danube into the Black Sea (ca. 200 km³/a).</p><p>Human activities have severely altered the Upper Danube catchment, impacting both the main stem and the main pre-alpine tributaries. Due to the Upper Danube’s considerable natural gradient and mountainous character, this part of the Danube is extensively used for hydropower production. Ten large (> 10 MW) hydropower plants are situated along the Austrian Danube (out of a total of 41), and only two Danube stretches can still be characterized as free-flowing (Wachau, Nationalpark Donau-Auen).  Besides energy generation, other human activities such as agriculture, shipping, industrialisation, urbanisation and tourism, have been and still are changing the process and system dynamics of the Upper Danube.  Climate change is additionally affecting this already heavily impacted River System.</p><p>The Upper Danube Austria and its pre-alpine network of tributaries is therefore an ideal case study region to investigate the multiple effects of human activities on riverine systems and was chosen as a “supersite” within Danubius-RI, the “International Centre for Advanced Studies on River-Sea Systems”. Danubius-RI is being developed as distributed Research Infrastructures with the goal to support interdisciplinary and integrated research on river-sea systems. DANUBIUS-RI aims to enable and support research addressing the conflicts between society’s demands, environmental change and environmental protection for river -sea systems worldwide and brings together research on freshwaters and the interface to marine waters, drawing on existing research excellence across Europe.</p><p>The supersite “Upper Danube Austria and its pre-alpine network of tributaries” covers the freshwater spectrum within the river-sea continuum, ranging from alpine and pre-alpine headwater streams along major Danube tributaries to the Danube River, including adjacent floodplains in the Upper Danube catchment. The research focus lies on the interactive effects of climate change, land use pressures, and hydromorphological alterations on the biodiversity, ecological functions, and the ecosystem service provision of streams and rivers in the Upper Danube basin and their role within the catchment.</p><p>The Supersite “Upper Danube Austria and its pre-alpine network of tributaries” joins forces of eight Austrian research institutions and is led by WasserCluster Lunz and the Institute for Hydrobiology and Aquatic Ecosystem Management (IHG) at the University of Natural Resources and Life Sciences, Vienna (BOKU). Research on sustainable management and restoration of riverine landscapes (WFD, FD, HD, Biodiversity  Strategy) in the Upper Danube Catchment is an important contribution to a healthy River-Sea System of the Danube River Basin as a whole.</p>


Sign in / Sign up

Export Citation Format

Share Document