Distribution of soil organic carbon impacted by land-use change and check dam on the Loess Plateau of China

Author(s):  
Peng Shi ◽  
Yan Zhang ◽  
Kexin Lu ◽  
Zhaohong Feng ◽  
Yang Yu

<p>Vegetation restoration, terrace and check dam construction are the major measures for soil and water conservation on the Loess Plateau. These effective measures of stabilizing soils have significant impacts on soil organic carbon (SOC) distribution. To understand the impact of land-use changes combined with check dam construction on SOC distribution, 1060 soil samples were collected across a watershed on the Loess Plateau. Forestland, shrubland and terrace had significant higher SOC concentrations in the 0-20 cm soil layer than that of sloping cropland.    Land use change affects the process of runoff and sediment transportation, which has an impact on the migration and transformation of soil carbon. The soil erosion of sloping farmland is the most serious, and the maximum annual erosion rate is as high as 10853.56 t·km<sup>-2</sup>. Carbon sedimented in the dam land was mainly from sloping cropland, and this source percentage was 65%. The application of hydrological controls to hillslopes and along river channels should be considered when assessing carbon sequestration within the soil erosion subsystem. </p>

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2018 ◽  
Author(s):  
Victoria Naipal ◽  
Philippe Ciais ◽  
Yilong Wang ◽  
Ronny Lauerwald ◽  
Bertrand Guenet ◽  
...  

Abstract. The onset and expansion of agriculture has accelerated soil erosion by rainfall and runoff substantially, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use change (LUC). However, a full understanding of the impact of erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods compatible with Earth System Models (ESMs) in order to explicitly represent the links between soil erosion by rainfall and runoff and carbon dynamics. For this we use an emulator that represents the carbon cycle of a land surface model, in combination with the Revised Universal Soil Loss Equation model. We applied this modeling framework at the global scale to evaluate the effects of potential soil erosion (soil removal only) in the presence of other perturbations of the carbon cycle: elevated atmospheric CO2, climate variability, and LUC. We found that over the period 1850–2005 AD acceleration of soil erosion leads to a total potential SOC removal flux of 100 Pg C of which 80 % occurs on agricultural, pasture and natural grass lands. Including soil erosion in the SOC-dynamics scheme results in a doubling of the cumulative loss of SOC over 1850–2005 due to the combined effects of climate variability, increasing atmospheric CO2 and LUC. This additional erosional loss decreases the cumulative global carbon sink on land by 5 Pg for this specific period, with the largest effects found for the tropics, where deforestation and agricultural expansion increased soil erosion rates significantly. We also show that the potential effects of soil erosion on the global SOC stocks cannot be ignored when compared to the effects of climate change or land use change on the carbon cycle. We conclude that it is necessary to include soil erosion in assessments of LUC and evaluations of the terrestrial carbon cycle.


2018 ◽  
Vol 15 (14) ◽  
pp. 4459-4480 ◽  
Author(s):  
Victoria Naipal ◽  
Philippe Ciais ◽  
Yilong Wang ◽  
Ronny Lauerwald ◽  
Bertrand Guenet ◽  
...  

Abstract. Erosion is an Earth system process that transports carbon laterally across the land surface and is currently accelerated by anthropogenic activities. Anthropogenic land cover change has accelerated soil erosion rates by rainfall and runoff substantially, mobilizing vast quantities of soil organic carbon (SOC) globally. At timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use change (LUC). However, a full understanding of the impact of erosion on land–atmosphere carbon exchange is still missing. The aim of this study is to better constrain the terrestrial carbon fluxes by developing methods compatible with land surface models (LSMs) in order to explicitly represent the links between soil erosion by rainfall and runoff and carbon dynamics. For this we use an emulator that represents the carbon cycle of a LSM, in combination with the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate the effects of potential soil erosion (soil removal only) in the presence of other perturbations of the carbon cycle: elevated atmospheric CO2, climate variability, and LUC. We find that over the period AD 1850–2005 acceleration of soil erosion leads to a total potential SOC removal flux of 74±18 Pg C, of which 79 %–85 % occurs on agricultural land and grassland. Using our best estimates for soil erosion we find that including soil erosion in the SOC-dynamics scheme results in an increase of 62 % of the cumulative loss of SOC over 1850–2005 due to the combined effects of climate variability, increasing atmospheric CO2 and LUC. This additional erosional loss decreases the cumulative global carbon sink on land by 2 Pg of carbon for this specific period, with the largest effects found for the tropics, where deforestation and agricultural expansion increased soil erosion rates significantly. We conclude that the potential effect of soil erosion on the global SOC stock is comparable to the effects of climate or LUC. It is thus necessary to include soil erosion in assessments of LUC and evaluations of the terrestrial carbon cycle.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


Sign in / Sign up

Export Citation Format

Share Document