Quantifying Irrigation Water Use over Regional Scales with Landsat and Climate Data

Author(s):  
David Bretreger ◽  
In-Young Yeo ◽  
Greg Hancock ◽  
Garry Willgoose

<p>Irrigated agriculture has been identified as using approximately 72% of water globally. Australia, like many places in the world, is subject to water sharing plans that cross government boarders and are subject to a mixture of management policies. There is a pressing need to develop a method to monitor irrigation water use to aid in water resource assessments and monitoring. This paper aims to test a previously developed method which monitors irrigation water use using remotely sensed observations over the catchment scale, without the need for in-situ observations, ground data or in‑depth knowledge of crops and their planting dates. Using conservative assumptions about agricultural land management practice, irrigation is calculated as Irr=AET-P. The method tests three vegetation indices derived from Landsat 5/7/8 images to calculate crop coefficients (K<sub>c</sub>) based on multiple published relationships. These are combined through the FAO56 methodology using gridded rainfall and two reference evapotranspiration (ET<sub>0</sub>) products to find actual evapotranspiration as AET=ET<sub>0</sub>xK<sub>c</sub>, providing six ET<sub>0</sub>-K<sub>c</sub> combinations. Validation data is sourced from Irrigation Infrastructure Operators (IIO) from across the Murray-Darling Basin, Australia which are required to record irrigation water deliveries for billing purposes. The majority of these regions are in arid or semi-arid regions. Data periods used in this study range from 2003/04 to 2016/17. Results indicate this method can effectively assess irrigation water use over a range of catchment sizes from ~6,000 to ~600,000 ha. The best results returned a monthly irrigation RMSE ranging from 1.13 to 2.42 mm/month. Issues arise when regions have a designated low water allocation volume for that season (<40%). The allocation percentage is a function of water storage levels, demand and forecasts. Comparisons with the Standardised Precipitation Index (SPI) and Evaporative Stress Index (ESI) show that the proposed method is robust to the rapid onset and short-term droughts. However, its performance was poor during the long term droughts with low water allocation years. The study results during these years has been predominately attributed to water stress in certain crops being undetected, agricultural managers skipping annual crop commodities as well as stock and domestic water use making up larger portions of total water use. This is a limitation of this approach, although when only comparing results in years with greater than 40% allocations, the results improved significantly showing it can monitor water use effectively. When adequate water is available, this approach is able to accurately predict irrigation water use for the sites examined.</p>

2020 ◽  
Vol 63 (3) ◽  
pp. 703-729 ◽  
Author(s):  
Steven R. Evett ◽  
Paul D. Colaizzi ◽  
Freddie R. Lamm ◽  
Susan A. O’Shaughnessy ◽  
Derek M. Heeren ◽  
...  

Highlights Irrigation is key to the productivity of Great Plains agriculture but is threatened by water scarcity. The irrigated area grew to >9 million ha since 1870, mostly since 1950, but is likely to decline. Changes in climate, water availability, irrigated area, and policy will affect productivity. Adaptation and innovation, hallmarks of Great Plains populations, will ensure future success. Abstract. Motivated by the need for sustainable water management and technology for next-generation crop production, the future of irrigation on the U.S. Great Plains was examined through the lenses of past changes in water supply, historical changes in irrigated area, and innovations in irrigation technology, management, and agronomy. We analyzed the history of irrigated agriculture through the 1900s to the present day. We focused particularly on the efficiency and water productivity of irrigation systems (application efficiency, crop water productivity, and irrigation water use productivity) as a connection between water resource management and agricultural production. Technology innovations have greatly increased the efficiency of water application, the productivity of water use, and the agricultural productivity of the Great Plains. We also examined the changes in water stored in the High Plains aquifer, which is the region’s principle supply for irrigation water. Relative to other states, the aquifer has been less impacted in Nebraska, despite large increases in irrigated area. Greatly increased irrigation efficiency has played a role in this, but so have regulations and the recharge to the aquifer from the Nebraska Sand Hills and from rivers crossing the state. The outlook for irrigation is less positive in western Kansas, eastern Colorado, and the Oklahoma and Texas Panhandles. The aquifer in these regions is recharged at rates much less than current pumping, and the aquifer is declining as a result. Improvements in irrigation technology and management plus changes in crops grown have made irrigation ever more efficient and allowed irrigation to continue. There is good reason to expect that future research and development efforts by federal and state researchers, extension specialists, and industry, often in concert, will continue to improve the efficiency and productivity of irrigated agriculture. Public policy changes will also play a role in regulating consumption and motivating on-farm efficiency improvements. Water supplies, while finite, will be stretched much further than projected by some who look only at past rates of consumption. Thus, irrigation will continue to be important economically for an extended period. Sustaining irrigation is crucial to sustained productivity of the Great Plains “bread basket” because on average irrigation doubles the efficiency with which water is turned into crop yields compared with what can be attained in this region with precipitation alone. Lessons learned from the Great Plains are relevant to irrigation in semi-arid and subhumid areas worldwide. Keywords: Center pivot, Crop water productivity, History, Sprinkler irrigation, Subsurface drip irrigation, Water use efficiency.


1993 ◽  
Author(s):  
T.W. Holland ◽  
C.A. Manning ◽  
K.L. Stafford

1993 ◽  
Author(s):  
T.W. Holland ◽  
C.A. Manning ◽  
K.L. Stafford

1993 ◽  
Author(s):  
T.W. Holland ◽  
C.A. Manning ◽  
K.L. Stafford

Sign in / Sign up

Export Citation Format

Share Document