Regional Coastal Cooperation in southern Sweden as a method for coastal management and communication.

Author(s):  
Per Danielsson ◽  
Dominika Nordh ◽  
Anette Björlin

<p><strong>Abstract</strong></p><p>The County Administrative Boards in Skåne and Halland, together with the Swedish Geotechnical Institute (SGI), and Swedish Geological Survey (SGU), have taken the initiative to start a Regional Coastal Cooperation. Both counties’ municipalities and individuals are currently facing problems managing rising sea levels, erosion and flooding.</p><p>Regional cooperation is important for Skåne and Halland as they are the two counties in southern Sweden that are most likely to be exposed to the combined effects of rising sea levels, flooding and erosion. Strategic and coordinated efforts at local level are needed to deal with these challenges in coastal areas, where guidance and support are also provided from regional and national levels. Today's governance system where the responsibility for dealing with these challenges falls on municipalities and individual home owners, presents difficulties in solving complex issues. Various actors feel that they are affected in a way that is not fair. Implementing appropriate measures requires extensive coordination, collaboration, a clear division of responsibilities and financial resources. Regional Coastal Cooperation aims, among other things, to inform national decision-makers in close dialogue with the coastal municipalities in Skåne and Halland that there is a need to strengthen the state's responsibility for these issues.</p><p>Regional Coastal Cooperation also to highlights the need to develop knowledge and planning in order to deal with the difficult issues associated with rising sea level which may affect the development, infrastructure and other values ​​on the coast. Today, there is no comprehensive information on how coastal processes affect different coastal sections in Skåne and Halland. Knowledge about different types of measures and how well they work also needs to be increased. Increased knowledge and consensus are necessary to achieve measures that involve sustainable development in accordance with Agenda 2030 and the global goals.</p><p>The overall goal of Regional Coastal Cooperation is to find concrete solutions to address the challenges posed by rising sea levels, erosion and flooding in coastal areas in Skåne and Halland in ways that are environmentally, economically and socially sustainable.</p><p>In this presentation, we discuss the challenges and potentials of how five identified project groups within Regional Coastal Cooperation project work to implement solutions in coastal areas. Thus, we present how coastal municipalities and the property owners concerned gain knowledge of coastal processes, potential risks and possible measures. We evaluate how coastal municipalities develop and implement strategies for planning and managing the coast that ensure long-term sustainable solutions; manage erosion and flood on the basis of good knowledge, long-term visibility, flexibility, transparency and a holistic perspective. And we highlight how Regional Coastal Cooperation works to ensure that there is a sustainable and fair distribution of responsibilities and financing model for the undertaken measures. Finally, we assess the need for continued and strengthened cooperation in these coastal regions.</p>

2020 ◽  
Author(s):  
Lisa Van Well ◽  
Anette Björlin ◽  
Per Danielsson ◽  
Godefroid Godefroid Ndayikengurukiye ◽  
Gunnel Göransson

<p>Sea level rise poses profound challenges within current municipal and regional governance since it requires unusually long planning horizons, is surrounded by great uncertainties, and gives rise to novel ethical challenges. Adaptation to climate change is fundamentally an ethical issue because the aim of any proposed adaptation measure is to protect that which is valued in society. One of the most salient ethical issues discussed in the adaptation literature relates to the distribution of climate related risks, vulnerabilities and benefits across populations and over time. Raising sea-walls is typically associated with high costs and potentially negative ecological impacts as well as substantial equity concerns; managed retreat or realignment often causes problems related to property rights; and migration out of low-lying areas can involve the loss of sense and cultural identity and impact on receiving communities.</p><p>How can the soft and ethical dimensions of rising mean sea levels be characterized and how can their consequences be mapped? To help municipalities to understand the values and ethics attached to measures to deal with long-term rising sea levels in southern Sweden, we are developing a methodology of soft or ethical values to complement to GIS-mapping of coastal vulnerability based on coastal characteristics and socio-economic factors.</p><p>Rather than determining these values a priori, they are being discerned through workshops with relevant stakeholders and in interviews with citizens residing in and utilizing the coastal areas. The methodology attempts to determine the place-based of values within coastal communities with a focus on “whose” values, “what” values, and the long-term or short-term nature of values. It builds on an analytical framework developed to acquire information on the behavior, knowledge, perception and feelings of people living, working and enjoying the coastal areas.  In turn this stakeholder-based information is used to co-create “story maps” as tools to communicate complicated vulnerability analyses, highlight the ethical dimensions of various adaptation measures, raise awareness and aid decisionmakers in taking uncomfortable decisions to “wicked” planning problems around the negative effects of sea level rise, coastal erosion and urban flooding.</p><p>This paper presents the methodological development of the task as well as the results the study in four Swedish municipalities. The representation of the “soft” and ethical values provides an opportunity to help clarify these values to policymakers and increase resilience to rising sea levels.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2471
Author(s):  
Matteo Rubinato ◽  
Jacob Heyworth ◽  
James Hart

Rising sea levels are causing more frequent flooding events in coastal areas and generate many issues for coastal communities such as loss of property or damages to infrastructures. To address this issue, this paper reviews measures currently in place and identifies possible control measures that can be implemented to aid preservation of coastlines in the future. Breakwaters present a unique opportunity to proactively address the impact of coastal flooding. However, there is currently a lack of research into combined hard and soft engineering techniques. To address the global need for developing sustainable solutions, three specific breakwater configurations were designed and experimentally compared in the hydraulic laboratory at Coventry University to assess their performance in reducing overtopping and the impact of waves, quantifying the effectiveness of each. The investigation confirmed that stepped configurations work effectively in high amplitudes waves, especially with the presence of a slope angle to aid wave reflection. These results provide a very valuable preliminary investigation into novel sustainable solutions incorporating both artificial and natural based strategies that could be considered by local and national authorities for the planning of future mitigation strategies to defend coastal areas from flooding and erosion.


2020 ◽  
Author(s):  
Nathalie Long ◽  
Pierre Cornut ◽  
Virginia Kolb

Abstract. The ongoing phenomenon of climate change is leading to an upsurge in the number of extreme events. Territories must adapt to these modifications in order to protect their populations and the properties present in coastal areas. The adaptation of coastal areas also aims to make them more resilient to future events. In this article, we examine two strategies for adapting to coastal risks: holding the coastal line through hard constructions such as seawalls or ripraps and the managed retreat of activities and populations to a part of the territory not exposed to hazards. In France, these approaches are financed by a solidarity insurance system at the national level as well as local taxes. These solidarity systems aim to compensate the affected populations and finance implementation of the strategies chosen by local authorities. However, the French mainland coast generally attracts affluent residents, the price of land being higher than inland. This situation induces the presence of inequalities in these territories, inequalities which can be maintained or reinforced in the short and medium term when a defence strategy based on hard constructions is implemented. In such a trajectory, it appears that these territories would be less resilient in the long term, because of the maintenance costs of the structures and the uncertainties relating to the hazards (submersion, rising sea levels, erosion). Conversely, with a managed retreat strategy, inequalities would instead be done away with, since property and populations would no longer be exposed to hazards, which would cost society less and would lead these territories towards greater resilience in the long term. Only one social group would be strongly impacted by this strategy in the short term when they are subjected to a managed retreat to another part of the territory.


2021 ◽  
Vol 21 (3) ◽  
pp. 1087-1100
Author(s):  
Nathalie Long ◽  
Pierre Cornut ◽  
Virginia Kolb

Abstract. The ongoing phenomenon of climate change is leading to an upsurge in the number of extreme events. Territories must adapt to these modifications in order to protect their populations and the properties present in coastal areas. The adaptation of coastal areas also aims to make them more resilient to future events. In this article, we examine two strategies for adapting to coastal risks: holding the coastal line through hard constructions such as seawalls or ripraps and the managed retreat of activities and populations to a part of the territory not exposed to hazards. In France, these approaches are financed by a solidarity insurance system at the national level as well as local taxes. These solidarity systems aim to compensate the affected populations and finance implementation of the strategies chosen by local authorities. However, the French mainland coast generally attracts affluent residents, the price of land being higher than inland. This situation induces the presence of inequalities in these territories, inequalities which can be maintained or reinforced in the short and medium term when a defense strategy based on hard constructions is implemented. In such a trajectory, it appears that these territories would be less resilient in the long term because of the maintenance costs of the structures and the uncertainties relating to the hazards (submersion, rising sea levels, erosion). Conversely, with a managed-retreat strategy, inequalities would instead be done away with since property and populations would no longer be exposed to hazards, which would cost society less and would lead these territories towards greater resilience in the long term. Only one social group would be strongly impacted by this strategy in the short term when they are subjected to a managed retreat to another part of the territory.


Author(s):  
Akira Hirano

AbstractImportant aspects for understanding the effects of climate change on tropical cyclones (TCs) are the frequency of TCs and their tracking patterns. Coastal areas are increasingly threatened by rising sea levels and associated storm surges brought on by TCs. Rice production in Myanmar relies strongly on low-lying coastal areas. This study aims to provide insights into the effects of global warming on TCs and the implications for sustainable development in vulnerable coastal areas in Myanmar. Using TC records from the International Best Track Archive for Climate Stewardship dataset during the 30-year period from 1983 to 2012, a hot spot analysis based on Getis-Ord (Gi*) statistics was conducted to identify the spatiotemporal patterns of TC tracks along the coast of Myanmar. The results revealed notable changes in some areas along the central to southern coasts during the study period. These included a considerable increase in TC tracks (p value < 0.01) near the Ayeyarwady Delta coast, otherwise known as “the rice bowl” of the nation. This finding aligns with trends in published studies and reinforced the observed trends with spatial statistics. With the intensification of TCs due to global warming, such a significant increase in TC experiences near the major rice-producing coastal region raises concerns about future agricultural sustainability.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 62 ◽  
Author(s):  
Antoine Mury ◽  
Antoine Collin ◽  
Dorothée James

Coastal areas are among the most endangered places in the world, due to their exposure to both marine and terrestrial hazards. Coastal areas host more than two-thirds of the world’s population, and will become increasingly affected by global changes, in particular, rising sea levels. Monitoring and protecting the coastlines have impelled scientists to develop adequate tools and methods to spatially monitor morpho-sedimentary coastal areas. This paper presents the capabilities of the aerial drone, as an “all-in-one” technology, to drive accurate morpho-sedimentary investigations in 1D, 2D and 2.5D at very high resolution. Our results show that drone-related fine-resolution, high accuracies and point density outperform the state-of-the-science manned airborne passive and active methods for shoreline position tracking, digital elevation model as well as point cloud creation. We further discuss the reduced costs per acquisition campaign, the increased spatial and temporal resolution, and demonstrate the potentialities to carry out diachronic and volumetric analyses, bringing new perspectives for coastal scientists and managers.


2018 ◽  
Vol 138 (5) ◽  
pp. 282-286 ◽  
Author(s):  
JT Walker

Climate change is predicted to have a major impact on people’s lives with the recent extreme weather events and varying abnormal temperature profiles across the world raising concerns. The impacts of global warming are already being observed, from rising sea levels and melting snow and ice to changing weather patterns. Scientists state unequivocally that these trends cannot be explained by natural variability in climate alone. Human activities, especially the burning of fossil fuels, have warmed the earth by dramatically increasing concentrations of heat-trapping gases in the atmosphere; as these concentrations increase, the more the earth will warm. Climate change and related extreme weather events are being exacerbated sooner than has previously been considered and are already adversely affecting ecosystems and human health by increasing the burden and type of disease at a local level. Changes to the marine environment and freshwater supplies already affect significant parts of the world’s population and warmer temperatures, especially in more temperate regions, may see an increased spread and transmission of diseases usually associated with warmer climes including, for example, cholera and malaria; these impacts are likely to become more severe in a greater number of countries. This review discusses the impacts of climate change including changes in infectious disease transmission, patterns of waterborne diseases and the likely consequences of climate change due to warmer water, drought, higher rainfall, rising sea levels and flooding.


Sign in / Sign up

Export Citation Format

Share Document